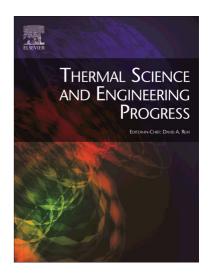
Accepted Manuscript

Cut-off Temperature Evaluation and Performance Comparison from Energetic and Exergetic Perspective for NH₃-H₂O Absorption Refrigeration System

Vinay Kumar, Bhargav Pandya, Jatin Patel, Vijay Matawala

PII: S2451-9049(17)30172-5


DOI: https://doi.org/10.1016/j.tsep.2017.09.007

Reference: TSEP 59

To appear in: Thermal Science and Engineering Progress

Received Date: 14 June 2017

Revised Date: 19 September 2017 Accepted Date: 23 September 2017

Please cite this article as: V. Kumar, B. Pandya, J. Patel, V. Matawala, Cut-off Temperature Evaluation and Performance Comparison from Energetic and Exergetic Perspective for NH₃-H₂O Absorption Refrigeration System, *Thermal Science and Engineering Progress* (2017), doi: https://doi.org/10.1016/j.tsep.2017.09.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cut-off Temperature Evaluation and Performance Comparison from Energetic and Exergetic Perspective for NH₃-H₂O Absorption Refrigeration System

Revision Submitted to Thermal Science and Engineering Progress

Vinay Kumar^{1*}, Bhargav Pandya², Jatin Patel³, Vijay Matawala⁴

^{1, 2, 4} Department of Mechanical Engineering, Gujarat Power Engineering and Research Institute, Gujarat, 382710, India.

³ School of Technology, Pandit Deen Dayal Petroleum University, Raisan, Gandhinagar, Gujarat, 382007, India.

*Corresponding Author

Email- vinaysharma.energy@gmail.com

Abstract

This study represents the thermodynamic analysis and optimization of single effect aquaammonia absorption cooling system. Mathematical models are derived from thermodynamic theory to compute the optimum performance parameters. Cut-off temperature to operate the system is obtained at various operating temperatures. Analysis depicts that with raise in evaporator temperature from -5 to 5 °C, the required cut-off temperature decreased from 72 °C to 59 °C. Through realistic comparison between thermodynamic first and second law analysis, optimum generator temperature corresponding to maximum *COP* and minimum exergy destruction is evaluated. It is found that the optimum generator temperature corresponding to exergy approach is 11 °C lower as compared to energy approach. Optimum generator temperature is a strong function of evaporator and condenser temperature. Hence, it is feasible to determine optimum generator temperature for certain range of evaporator and

Download English Version:

https://daneshyari.com/en/article/8918839

Download Persian Version:

https://daneshyari.com/article/8918839

<u>Daneshyari.com</u>