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a b s t r a c t

Thermal dispersion effects on fully developed forced convection inside a porous-saturated pipe are inves-
tigated. The pipe wall is assumed to be kept at a uniform and constant heat flux. Having the fully devel-
oped velocity field furnished by an arbitrary power series function, the energy equation is solved using
asymptotic techniques for the limiting case when thermal conductivity, as a result of thermal dispersion,
weakly changes with the Péclet number. A numerical solution, valid for the entire range of thermal dis-
persion conductivity, is also presented. This latter solution is presented to check the accuracy of the for-
mer. The two solutions are then cross-validated in the limits. Besides, results are found to be in good
agreement with those previously reported in the literature.

� 2017 Published by Elsevier Ltd.

1. Introduction

Because of its relevance to a variety of engineering applications
including geothermal systems, underground fire control, coal and
grain storage, solid matrix heat exchangers, and energy recovery
in high temperature furnaces, convection in porous media is a
well-developed field of investigation [1–3]. Porous heat exchang-
ers were investigated for their possible applications in solar ther-
mal plants [4], cooling towers [5], electronic cooling [6], exhaust
gas recirculation for diesel engines [7] and thermal storage systems
[8]. The effects of thermal dispersion on convection in porous
media have been analyzed in details as surveyed in [9]. Closed
form solutions, to fully developed thermal energy equation, can
be obtained for the case of Darcy flow. However, with the bound-
ary, inertia and convective term effects included in the fully devel-
oped momentum transfer equation in porous media, no analytical
solution has been reported in the literature. Furthermore, thermal
analysis of the problem has to rely on a prescribed velocity field.
This is because thermal dispersion conductivity is a function of
the (volume-averaged) fluid velocity which is not uniformly dis-
tributed over the duct cross-section. In fact, a core region is
observed away from the walls while the velocity sharply changes

near the walls [10]. Hence, analytical solution to the temperature
distribution can be obtained as a combination of log, hyperbolic
and polygarithm functions with imaginary arguments [9] which
are too complex to be useful in engineering applications where a
quick assessment of heat transfer through porous media is of pri-
mary interest. Numerical simulations have been exclusively used
in the literature for such non-Darcy flow problems [11–14]. Hunt
and Tien [15] experimentally studied non-Darcian forced convec-
tion flow and heat transfer in high-porosity fibrous media. A model
was put forward for thermal dispersion and the adequacy of a
homogeneous energy equation to model the transport was
ascertained.

Thermal dispersion tensors were calculated within an infinite
porous medium formed by a spatially periodic array of
longitudinally-displaced elliptic rods by Pedras and de Lemos
[16]. The authors applied a low Reynolds k–e closure for turbulence
and investigated the effects of solid-fluid thermal conductivity
ratio using a unit-cell geometry in conjunction with periodic
boundary conditions for mass, momentum and energy equations.
Cell-integrated results indicated that compared to the longitudinal
dispersion coefficient, the transversal counterpart is more sensitive
to porosity, the applied boundary condition type, medium mor-
phology and solid–fluid conductivity.

Two methods of volume average and multiple scale expansion
were undertaken to model the thermal dispersion in a rigid
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homogeneous porous medium described by a periodic model in
[17]. The theoretical longitudinal thermal dispersion coefficient
for a stratified system was found to be in good agreement with
those obtained through the use of a random walk method.

Cheng [18] investigated fully-developed flow in a rectangular
and an annular packed bed using Van Driest’s mixing length the-
ory. The predicted heat transfer features were contrasted with
the experimental data to obtain the constants in the mixing length
theory as well as those in the expression for the transverse thermal
dispersion.

Ozgumus and Mobedi [19] numerically investigated the effects
of pore to throat size ratio on thermal dispersion of periodic porous
media consisting of inline array of rectangular rods. The difference
between macroscopic and microscopic values of temperature and
velocity are computed numerically so that the thermal dispersion
coefficients of the porous media can be determined. It was
reported that for Re > 10, higher Reynolds number and porosity
values increase both the transverse and longitudinal thermal dis-
persion coefficients. Interestingly, an optimum value for pore to
throat size ratio was reported maximizing the longitudinal thermal
dispersion coefficient.

Metzeger et al. [20] have evaluated the thermal dispersion coef-
ficients for water flow through a packed bed of glass spheres by
placing thermocouples in the downstream neighborhood of a line
heat source to measure the temperature response to a step heat
input. Monte Carlo simulations of measurements was performed
to quantify the errors. Interestingly, it was reported that the
assumption of the one-temperature model is reasonable even in
the case of local thermal non-equilibrium.

Ozgumus et al. [21] reviewed the experimental studies con-
ducted to determine the effective thermal conductivity of one class
of porous media begin packed beds. The authors categorized the
experimental works into three groups: (1) heating/cooling of the
lateral boundaries, (2) heat addition at the channel inlet/outlet,
(3) internal heat generation. Experimental details, methods,

obtained results, and suggested correlations for the determination
of the effective thermal conductivity were presented.

In order to by-pass the difficulty in the analysis of this problem,
an asymptotic solution is presented here based on suggestions and
simplifications discussed in [22]. These make our asymptotic solu-
tion valid for a range of thermal dispersion conductivity values. In
forthcoming sections, the analysis of the problem is discussed
along with numerical solutions for a wide range of thermal disper-
sion conductivity values. Comparison between the two solutions,
sets the range of validity of the theoretical results obtained based
on the asymptotic techniques.

2. Analysis

For the steady-state fully developed flow, we have unidirec-
tional flow in the x⁄-direction inside a porous-saturated pipe with
impermeable wall at r⁄ = R, as illustrated in Fig. 1.

For x⁄ > 0, the (downstream) heat flux at the tube wall is held
constant at the value q‘‘. The momentum Eq. [9] is

Fig. 1. Definition sketch.

Nomenclature

a,b,c coefficients of the series [–]
B dimensionless constant [–]
C perturbation parameter [–]
Cd thermal dispersion coefficient [–]
CF form drag coefficient [–]
cP specific heat at constant pressure [j/kg K]
D1 integration constant [–]
Da Darcy number [–]
F dimensionless form drag coefficient [–]
G applied pressure gradient [Pa/m]
I Bessel function [–]
k thermal conductivity [W/m.K]
K permeability [m2]
M leff =l [–]
Nu Nusselt number [–]
Pe Péclet number, Pe = RePr [–]
Pr Prandtl number, Pr ¼ lcp

kf
[–]

R pipe radius [m]
Re Reynolds number, Re ¼ qU

ffiffiffi
K

p
l [–]

q00 wall heat flux [W/m2]
s ðMDaÞ�1=2 [–]
T⁄ temperature [K]
Tm bulk mean temperature [K]
Tw downstream wall temperature [K]
u lu � =GR2 [–]

u⁄ filtration velocity [m/s]
û u�=U [–]
U mean velocity [m/s]
(x�; r�) coordinate system [m]
r r�=R [-]

Greek symbols
h ðT� � TwÞ=ðTm � TwÞ [–]
/ porosity [–]
j thermal conductivity ratio kf

ke
l dynamic viscosity [Pa.s]
leff effective dynamic viscosity [Pa.s]
w modified dimensionless temperature [-]
q fluid density [kg/m3]
Subscripts(0), (1)

term sequence in asymptotic expansion
d dispersion
e effective
f fluid
n term sequence in power series expansion
new, old velocity values in successive (old/previous and new/cur-

rent) iterations
s solid
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