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a  b  s  t  r  a  c  t

The  behaviour  of energy  levels  and  optical  spectra  of  a charged  particle  (electron  or  hole)  confined  within
a potential  well  of  ellipsoidal  shape  is investigated  as a function  of the  shape-anisotropy  parameter.  If two
energy  levels  of  the  same  symmetry  intersect  in  a perturbation-theory  approximation,  they  move  apart
on direct  diagonalization  of the  appropriate  Hamiltonian.  The  intersection  of  the  energy  levels  leads  to  a
discontinuity  of the  corresponding  dipole-moment  matrix  element.  The  discontinuity  of  matrix  elements
is not reflected  in  the behaviour  of transition  probabilities  which  are continuous  functions  of  the  shape-
anisotropy  parameter.  The  profiles  of a spectral  line  emitted  or absorbed  by an  ensemble  of ellipsoidally
shaped  nanoparticles  with  a Gaussian  distribution  of size  are  calculated  and  discussed.
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1. Introduction

In a regime of strong size quantization, the electron-hole
Coulomb interaction energy is much less than the energy of a
charged-particle electron or hole confined within a crystalline
semiconductor structure of varied shape and nanometre size. In this
regime one can hence neglect the Coulomb interaction and treat
the electron and hole independently. The most important result
that early investigations revealed is the strong interdependence
between the character of the energy spectrum of the nanometre-
size object and its geometrical parameters [1]. In these works, the
qualitative and quantitative descriptions of the electronic, optical
and mechanical properties apply to spherical nanoparticles, i.e.,
for spherical quantum dots (see Ref. [2] and references therein).
The properties of nanoparticles having cylindrical [3–6], ellipsoidal
[7–10], semi-ellipsoidal [11], pyramidal and lens shape with infi-
nite and finite [12–14] barrier heights were subsequently analysed.
Furthermore, to facilitate the comparison of calculated results with
the probable and available experimental data, size distribution of
growing quantum dots have been taken into account [15–18].

Experiments indicate that small nanoparticles have a nearly
spherical shape, whereas large nanoparticles have an ellipsoidal
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shape. For the growth of a nanoparticle with various methods,
the energy spectrum varies continuously with its size and shape.
An advantage of nanoparticles of ellipsoidal shape with respect
to spherical quantum dots arises from the additional geometrical
characteristics related to shape-anisotropy parameter  ̌ (  ̌ = c/a in
which c and a are prolate ellipsoidal semi-axes). That effect makes
possible the tuning of the spectral properties of objects of nanome-
tre size. The tuneable control of spectral and optical characteristics
of the nanometre objects through size and shape opens exciting
possibilities for the engineering of new functional materials with a
wide prospective application. Ellipsoidal nanoparticles thus play an
important role for applications; the most promising candidates for
further technological advances are precisely the ellipsoidally elon-
gated objects of nanometre size. A comprehensive knowledge of the
spectral and optical properties of ellipsoidally shaped nanoparticles
is hence desirable.

In our recent papers [19,20], we considered a charged particle
(electron or hole) confined within a potential well of ellipsoidal
shape; the problem was  solved in an effective-mass approxima-
tion. We  assumed that a spherical potential well with infinitely high
walls was  subject to a deformation, which makes its shape that of a
prolate ellipsoid. For a small deviation from the sphere the problem
is solvable according to perturbation theory, with the unperturbed
wave functions and energy levels corresponding to a spherical well.
For an arbitrary deviation from a spherical shape the problem was
solved using a direct diagonalization of the appropriate Hamilto-
nian. The energy levels and the corresponding wave functions have
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been thus obtained for the shape-anisotropy parameter  ̌ over a
wide range. Using the obtained wave functions and energy lev-
els, we calculated the optical-transition matrix elements in the
dipole approximation. The transition-matrix elements involving
the ground and first excited states are monotonic functions of
ˇ, whereas matrix elements involving the corresponding excited
states have zeros and extrema that are reflected in the behaviour of
their transition probabilities. Furthermore, some matrix elements
involving the highly excited states have a discontinuity. This out-
come is unexpected and requires comprehensive study to establish
its origin and influence on the optical properties of nanoparticles.
Although the existence of an effect of quantum confinement on
the optical response of nanoparticles is well established, the fine
structure of their emission and absorption spectra is incompletely
studied.

For a diatomic molecule, only terms of distinct symmetry can
intersect; the intersection of terms of like symmetry is impossible
[21]. If, as a result of some approximate calculation, we obtain two
intersecting terms of the same symmetry, they are found to move
apart on calculating the next level of approximation. This result not
only is true for a diatomic molecule but also is a general theorem of
quantum mechanics; it holds for any case in which the Hamiltonian
contains some parameter of which its eigenvalues are consequently
functions [22].

In this work, we seek to show that the above-mentioned
property of diatomic quasi-molecules is also characteristic for ellip-
soidally shaped nanoparticles with a variable parameter. Explicitly,
we show that for an ellipsoidally shaped nanoparticle some curves
representing the highly excited energy levels of the same symmetry
intersect for the some shape-anisotropy parameter  ̌ if the energy
levels are calculated with perturbation theory; the intersection of
these curves is impossible if the energy levels are obtained by a
direct diagonalization of the appropriate Hamiltonian, i.e., when
the interaction between the states is fully taken into account. We
demonstrate that the intersection of the excited energy levels of the
same symmetry leads to the discontinuity of the dipole-moment
matrix elements involving the excited and ground states. Moreover,
we explore the optical properties and show that the appearance of
some features in the profiles of spectral lines emitted or absorbed by
an ensemble of ellipsoidally shaped nanoparticles is caused entirely
by the existence of minima and zeros in the appropriate dipole-
moment matrix elements.

The article is organized as follows. After stating the purpose,
we present briefly the basic equations in Sect. 2. The results of cal-
culations are presented and discussed in Sects. 3 and 4, before a
conclusion in Sect. 5.

2. Intersecting and non-intersecting energy levels

We  consider a charged particle of effective mass m* confined
within a potential well of ellipsoidal shape with semi-axes a = b
and c:

x2 + y2

a2
+ z2

c2
= 1. (1)

In (1) a represents the size of a well in directions x and y, c is
the size in the direction z. The simplest potential V(x, y, z) of that
type is zero inside the ellipsoid and infinite on the surface of the
ellipsoid and beyond. The corresponding Schrödinger equation that
describes the motion of a particle trapped inside the ellipsoid, with
the boundary condition for the wave function to be zero on the
surface and outside the surface of the ellipsoid, reads:[
�xyz + K2 − 2m∗

�2
V(x, y, z)

]
� (x, y, z) = 0, (2)

in which K2 = 2m*E/�2.

In new variables � = xr0/a, � = yr0/a and ς  = zr0/c, the boundary
condition transforms from the surface of the ellipsoid to the sur-

face of a sphere of radius r0 = (�2 + �2 + ς2)
1/2

. After writing the
Laplace operator �xyz in the new variables, we rewrite Eq. (2) as:[
���ς + K2 − ˛U(�, �, ς)

]
� (�, �, ς) = 0, (3)

in which

U =

⎧⎨
⎩
c2(a2 − r2

0 )

r2
0 (c2 − a2)

���ς + ∂2

∂ς2
if �2 + �2 + ς2 < r2

0 ,

∞ if �2 + �2 + ς2 ≥ r2
0 ,

(4)

and  ̨ = r2
0 (c2 − a2)/(ac)2 is the parameter that reflects the devi-

ation of the potential well from a spherical well. Parameter  ̨ is
related to  ̌ according to  ̨ = r2

0 (1 − ˇ−2)/a2.
Transforming from coordinates �, � and ς to spherical coordi-

nates � = rsinϑcosϕ, � = rsinϑsinϕ and ς = rcosϑ in Eqs. (3) and (4),
we obtain an equation that describes the motion of a particle in the
sphere:[
�rϑϕ + K2 − ˛U(r, ϑ, ϕ)

]
� (r, ϑ, ϕ) = 0. (5)

The problem of the motion of a charged particle in an ellipsoidal
well thus reduces to the solutions of Eq. (5), in which effective
potential U(r, ϑ, ϕ) is defined with Eq. (4) with ���ς replaced
with the Laplace operator written in spherical coordinates, and
∂/∂ς = ∂/∂rcosϑ − r−1sinϑ∂/∂ϑ.

2.1. A perturbation approach

In a spherical potential well (  ̨ = 0), the states of a particle are
specified with quantum numbers n, l and m.  Here l is the orbital
quantum number and m = 0, ± 1, ± 2, ... is the magnetic quantum
number of the particle; n, which has no dependence on m,  numbers
the level in the spherical well for given l. The solutions of equation
(�rϑϕ + k2

nl
) nlm = 0 are well known and given in textbooks. The

eigenfunctions are  nlm(r, ϑ, ϕ) = Cnljl(knlr)Ylm(ϑ, ϕ), in which Cnl are
normalizing factors, jl(knlr) are spherical Bessel functions and Ylm(ϑ,
ϕ) are spherical harmonics. The corresponding eigenvalues depend
on the size of the potential well, r0, and two quantum numbers n
and l: k2

nl
= 
2

nl
/r2

0 , in which 
nl is the nth root of a spherical Bessel
function determined from the condition jl(knlr0) ≡ jl(
nl) = 0.

In Ref. [19] we assumed that ˛U is a small perturbation and
solved Eq. (5) using perturbation theory. For the first-, second-
and third-order corrections to the unperturbed energy, E(0)

nl
=

�
2
2
nl
/(2m∗r2

0 ), we obtained:

Enlm =
(
r2

0

a2
+ ˛E(1)

nlm
+ ˛2E(2)

nlm
+ ˛3E(3)

nlm

)
E(0)
nl
,

E(1)
nlm

= 1 − 2l(l + 1) + 2m2

(2l  − 1)(2l + 3)
,

E(2)
nlm

= A2
l+2B

(3)
nl+2 + A2

l−2B
(3)
nl−2, (6)

E(3)
nlm

=
(
c2(a2 − r2

0 )

r2
0 (c2 − a2)

− Al

)[
A2
l+2B

(4)
nl+2 + A2

l−2B
(4)
nl−2

]

2
nl.

In Eq. (6) Al and Al±2 are defined with expressions (A7) presented
in Appendix A of Ref. [19]; B(s)

nl±2 =
∑

n′ 
2
n′ l±2

/(
2
nl

− 
2
n′ l±2

)
s

is the
infinite sum; 
nl and 
n′ l±2 are the roots of spherical Bessel functions
jl(knlr) and jl±2(kn′ l±2r), respectively. For some states the energy
levels calculated using Eq. (6) are given in Appendix A.

We introduce dimensionless quantity εnlm that is related to
energy Enlm through equation. Figure 1 shows ε131, ε211 and ε151 as
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