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a b s t r a c t 

An efficient method for Bayesian inference in stochastic volatility models uses a linear 

state space representation to define a Gibbs sampler in which the volatilities are jointly 

updated. This method involves the choice of an offset parameter and we illustrate how 

its choice can have an important effect on the posterior inference. A Metropolis–Hastings 

algorithm is developed to robustify this approach to choice of the offset parameter. The 

method is illustrated on simulated data with known parameters, the daily log returns of 

the Eurostoxx index and a Bayesian vector autoregressive model with stochastic volatility. 

© 2016 ECOSTA ECONOMETRICS AND STATISTICS. Published by Elsevier B.V. All rights 

reserved. 

1. Introduction 

It is known that the volatility of many economic variables vary over time. Initial work on time-varying volatility often 

considered asset price returns. Over the long term, the volatility of equity returns may appear to be stable but usually there 

are periods of high volatility and calm market periods when the volatility may be low ( Enders, 2004 ). Several approaches 

have been developed to model this time-varying volatility. In ARCH and GARCH models ( Engle, 1982; Bollerslev, 1986 ), 

the volatility is modeled as a function of the lagged values of the asset returns and the volatility. Alternatively, stochastic 

volatility models assume that the volatility follows a known stochastic process such as an AR process for the logarithm of 

volatility (see e.g., Harvey and Shephard, 1996 ). 

In this paper, we will concentrate on the Bayesian estimation of stochastic volatility models (see e.g., Jacquier et al., 

1994; Kim et al., 1998; Chib et al., 2002 ). The asset returns may be expressed as functions of past returns or other economic 

variables and the log volatility is modeled as a separate AR process. A simple stochastic volatility model assumes that y t , 

the log return at time t , can be expressed as 

y t = e h t / 2 νt , t = 1 , . . . , T (1) 

h t = μ + φ(h t−1 − μ) + σηηt . 

where νt and ηt are independent error terms for which νt 
i.i.d. ∼ N (0 , 1) and ηt 

i.i.d. ∼ N (0 , 1) , and h t is the log volatility at 

time t . The model assumes that the log volatility h t follows an AR(1) process with parameters μ, φ, and ση . 

Bayesian inference is complicated since this is a non-linear state space model. Several Markov chain Monte Carlo (MCMC) 

methods have been developed to sample this class of models. Jacquier et al. (1994) used one-at-a-time updating of h t 
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with a carefully chosen proposal distribution (one-at-a-time or single move updating is often criticised for highly correlated 

samples). Samplers which update a block of h t ’s often lead to better mixing. For example, Jensen and Maheu (2014) propose 

to update a block of h t in an asymmetric, nonparametric stochastic volatility model. 

The model (1) can be expressed in linear state space form for h t using transformed data log y 2 t = h t + log ν2 
t . Kim et al. 

(1998) (KSC) approximate the distribution of log ν2 
t using a normal mixture distribution leading to a Gaussian linear state 

space form for h t conditional on the mixture states for each observation. This allows the volatilities h 1 , . . . , h T to be up- 

dated using Forward Filtering Backward Sampling (FFBS) techniques ( Carter and Kohn, 1994; Frühwirth-Schnatter, 1994 ). In 

order to make the approximation robust for small values of y t , a small offset parameter c is used and log (y 2 t + c) is used in 

place of log y 2 t as the transformed data. This leads to samples from an approximate posterior distribution for the parame- 

ters of the SV model and h 1 , . . . , h T . KSC suggest an importance sampling scheme for estimating posterior quantities using 

the approximate posterior as the importance sampling distribution. However, as with any importance sampler, results can 

become biased if the importance sampling distribution (the approximation) is sufficiently different to the actual posterior 

distribution. This can be the case if c is poorly chosen. The approach has been developed in various directions. Chib et al. 

(2002) consider models with Student-t distributed innovation, exogeneous variables and jumps in observations. Omori and 

Watanabe (2008) consider an asymmetric stochastic volatility model and allow correlation between the returns and the 

volatility which allows the modelling for the leverage effect. A multivariate normal approximation is used to express the 

model in a linear state space form with Gaussian errors. Results show a better performance compared to a single move 

sampler. More recently, Kastner and Frühwirth-Schnatter (2014) developed centring methods. 

More recently, the KSC sampler has been applied to more complicated models. For example, Belmonte et al. (2013) con- 

sider dynamic regression models with stochastic volatility 

y t = X t βt + e h t / 2 νt , t = 1 , . . . , T (2) 

h t = μ + φ(h t−1 − μ) + σηηt . 

Clark (2012) builds a vector autoregressive model with stochastic volatility, which will be further considered in this paper. 

Let y t be a ( p × 1)-dimensional vector of economics variables and x t be a ( q × 1)-dimensional vector of deterministic 

variables measured at time t . The data modelled as 

�(L )(y t − �x t ) = εt (3) 

where � is a ( p × q )-dimensional vector of coefficients, �(L ) = I p − �1 L − �2 L 
2 . . . �k L 

k is a lag polynomial and νt are 

independent errors. The errors εt are modelled using a factor stochastic volatility model. Let A be a lower triangular matrix 

with 1’s on the diagonal then 

εt = A 

−1 
0 . 5 
t νt , νt ∼ N (0 , I p ) , 


t = diag (e h 1 ,t , e h 2 ,t , . . . , e h p,t ) , 

h i,t = h i,t−1 + ση,i ηi,t , ηi,t 
iid ∼ N (0 , 1) ∀ i = 1 , 2 , . . . , p. 

Bayesian inference is made using a Gibbs sampler and the volatilities are updated using the KSC method in the ap- 

proximate model (i.e., using r � t = log ((y t − X t βt ) 
2 + c) for the dynamic regression model or r � t = A �(L )(y t − �x t ) + c for the 

vector autoregression model) but other parameters (such as β t ) are updated using the correct (rather than the approxi- 

mate) stochastic volatility model. Although, this seems to have little effect on inf erence, the Gibbs sam pler is not properly 

specified. In addition, in these models, the effect of c is harder to understand since the scale of r � t can change substantially 

between iterations. 

This paper makes two main contributions. Firstly, we develop an MCMC framework for sampling from the posterior 

distribution of the SV model (rather than an approximation to the SV model) using the KSC method as a proposal in a 

Metropolis–Hastings step for updating the volatilities. Secondly, we introduce a method for specifying the offset parameter 

using standardisation that robustifies the MCMC algorithm to the scale of the data. 

The paper initially considers the problem of sampling the time-varying volatilities in the stochastic volatility model 

in (1) and considers more complicated models in the examples. The remainder of the paper is organised as follows. 

Section 2 describes the Kim et al. (1998) method to linearise the log volatility model and the difficulty of using an appro- 

priate value of the offset parameter c is highlighted. In Section 3 , a standardisation method is introduced and a Metropolis–

Hastings (M–H) step is described to propose volatility parameter h 1 , . . . , h T using Forward Filtering Backward Sampling 

(FFBS). Results using simulated data, Eurostoxx daily log returns and a vector autoregressive model with stochastic volatility 

are discussed in Section 4 . Section 5 concludes. 

2. Linear state space method 

In this section, we review the sampling method of KSC and illustrate the effect of choosing c . KSC suggest transforming 

the observations in the SV model in (1) so that 

log y 2 t = h t + log ν2 
t , (4) 
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