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a b s t r a c t 

Describes a modified Fisher scoring algorithm for fitting a wide variety of latent class mod- 

els for categorical responses when both the class weights and the conditional distributions 

of the responses depend on individual covariates through a multinomial logit. A simple 

expression for computing the score vector and the empirical information matrix is pre- 

sented; it is shown that this matrix is positive definite under mild conditions. The Fisher 

scoring algorithm combines the empirical information matrix to update the step direction 

with a line search to optimize the step length. The algorithm converges for almost any 

choice of starting values. An application to the field of education transmission seems to 

suggest that, while parents’ education affects the child latent ability, their pressure affects 

directly the child’s achievements. 

© 2016 ECOSTA ECONOMETRICS AND STATISTICS. Published by Elsevier B.V. All rights 

reserved. 

1. Introduction 

Latent class models are important tools for modeling the dependence structure among categorical responses induced by 

unobservable heterogeneity. Since the pioneering work of Goodman (1974) , extensions in several directions have been pro- 

posed. Particular attention has been devoted to the case where the probabilities of belonging to the different latent classes 

may depend on covariates, see, for a detailed discussion, Vermunt (2010) and Petersen et al. (2012) . Latent class models 

where covariates may also affect the distribution of the responses conditionally on the latent, have been used by Bartolucci 

and Forcina (2006) and Dardanoni and Li Donni (2012) among others. For a general discussion of identifiability and infer- 

ence in latent class models where covariates may affect both the marginal distribution of the latent and the conditional 

distribution of the responses, see Huang and Bandeen-Roche (2004) . Finally, models where the assumption of conditional 

independence may be violated have been considered, among others, by Hagenaars (1988) within a log-linear context and 

Bartolucci and Forcina (2006) in the context of marginal models. 

It may be useful to recall the main reasons for using the EM (expectation–maximization) algorithm to compute the max- 

imum likelihood estimates in mixture models: (i) the likelihood of the complete data is, usually, much simpler to maximize, 

(ii) the algorithm is numerically stable, (iii) the likelihood of the incomplete data always increases from an M step to the 

next. One drawback of the EM algorithm is that, sometimes, the improvement produced by a single step may be so small 

that it may even becomes difficult to determine when to stop. In the case when covariates are assumed to affect only 
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the latent weights, methods for computing approximate estimates have been proposed by Bolck et al. (2004) and Vermunt 

(2010) . To speed up convergence, hybrid algorithms which combine EM and quasi-Newton steps have been proposed, see 

for instance ( Lin and Lee, 2008 ). Most available packages combine the EM algorithm with some kind of quasi-Newton step 

to increase efficiency. The performance of quasi-Newton algorithms may be greatly improved by performing a suitable line 

search to optimize the step length (see for example Potra and Shi, 1995; Turner, 2008 ). 

A Fisher scoring algorithm is described for fitting a rather general family of latent class models where individual covari- 

ates may affect both the marginal distribution of the latent and the conditional distributions of the responses. In addition, 

response variables are allowed to be associated conditionally on the latent, as long as the model is identifiable. Though this 

class of models is not entirely new and not as general as the one described by Bartolucci and Forcina (2006) , its likelihood 

is considerably easier to handle. By introducing a convenient matrix notation, a simple expression for the score vector and 

the Empirical information matrix (EIM) Meilison (1989) is derived; this matrix is used for computing the step direction. 

The EIM is much simpler to compute than both the observed and the expected information matrices. It is shown that the 

EIM, like the expected information matrix, is positive definite under very mild conditions, a result which does not hold 

for the observed information matrix. The use of the EIM for fitting algorithms and for estimating standard errors has been 

investigated by Scott (2002) in a quite general context. 

Section 2 defines the model, derives an expression for the score and the empirical information matrix and gives con- 

ditions under which this matrix is positive definite. Section 3 discusses efficient computation of these quantities and de- 

scribes a line search algorithm which makes the proposed Fisher scoring algorithm efficient and stable at the same time. 

Section 4 contains an application to the field of education transmission; Section 5 is devoted to discussions and main con- 

clusions. 

2. Description of the model and main results 

In the following let 1 u and I v denote, respectively, a column vector of u ones and an identity matrix of size v . Suppose 

that there are n subjects and c latent classes with the latent variable U coded as 1 , . . . , c. Let πi , i = 1 , . . . , n, denote the 

vector whose elements are the probabilities that the i th subject belongs to one of the c latent classes. Suppose there are 

T categorical response variables with V t , t = 1 , . . . T , having r t categories; let r = 

∏ 

t r t be the number of configurations of 

the response variables. The joint distribution of the response variables for the i th subject, conditional on the latent U = j, 

j = 1 , . . . , c, is determined by the r × 1 vector of probabilities q ij whose entries are arranged in lexicographic order, meaning 

that response variables with a larger index run faster. Finally let p i = �j π ij q ij denote the r × 1 vector of probabilities for 

the joint distribution of the responses. 

2.1. A model for the latent distribution 

Let X i be a c × K matrix of known constants, possibly depending on individual covariates, β a vector of K unknown 

parameters and assume that the marginal distribution of the latent is determined by a multinomial logit model with the 

initial category as reference, 

πi = 

exp (X i β) 

1 

′ 
c exp (X i β) 

. 

When no covariates are available, X i will be an identity matrix of size c without the first column. To make the j th logit 

( j = 2 , . . . , c) a linear function of x i , simply add a column of zeros except for the j th element which is equal to x i . 

2.2. A model for the conditional distributions of the responses 

The formulation proposed below is, essentially, a log-linear model with individual covariates for the q ij , j = 1 , . . . , c, the 

vectors containing the joint distribution of the responses for the i th subject conditionally on the latent. It is convenient to 

define the model in three steps as detailed below. 

(i) Set up a log-linear model which can be expressed in the form of a multivariate logit 

q i j = 

exp (Gθi j ) 

1 

′ 
r exp (Gθi j ) 

, 

where G is a r × g full rank design matrix for the log-linear model with r � g and θij ( j = 1 , . . . , c) is a vector of 

log-linear parameters possibly depending on covariates. If responses are assumed to be conditionally independent, G 

includes only the main effects of the response variables. Identifiability of models when interactions terms are present 

may be problematic (see Stanghellini and Vantaggi, 2013 ). An example of a design matrix G with interaction terms 

between responses coded in a parsimonious way is given in Section 4 . An algorithm for constructing the G matrix for 

any given log-linear model under the reference category coding is given by Colombi and Forcina (2014) , Section 2.1 . 

Please cite this article as: A. Forcina, A Fisher-scoring algorithm for fitting latent class models with individual covariates, 

Econometrics and Statistics (2016), http://dx.doi.org/10.1016/j.ecosta.2016.07.001 

http://dx.doi.org/10.1016/j.ecosta.2016.07.001


Download	English	Version:

https://daneshyari.com/en/article/8919517

Download	Persian	Version:

https://daneshyari.com/article/8919517

Daneshyari.com

https://daneshyari.com/en/article/8919517
https://daneshyari.com/article/8919517
https://daneshyari.com/

