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a b s t r a c t 

Estimating the in-sample volatility is one of the main difficulties that face Stochastic 

Volatility models when applied to financial time series. A non-parametric strategy based 

on Singular Spectrum Analysis is proposed to solve this problem. Its main advantage is its 

generality as it does not impose any parametric restriction on the volatility component and 

only some spectral structure is needed to identify it separately from noisy components. Its 

convincing performance is shown in an extensive Monte Carlo analysis that includes sta- 

tionary and nonstationary long memory, short memory and level shifts in the volatility 

component, which are models often used for financial time series. Its applicability is fi- 

nally illustrated in a daily Dow Jones Industrial index series and an intraday series from 

the Spanish Ibex35 stock index. 

© 2016 ECOSTA ECONOMETRICS AND STATISTICS. Published by Elsevier B.V. All rights 

reserved. 

1. Introduction 

Modelling volatility, usually characterised by second order moments, has sparked great interest from just before the turn 

of the 21st century and has been one of the most active fields of research in financial literature. Two main approaches have 

been used for that purpose: AutoRegressive Conditional Heteroscedasticity (ARCH) models and subsequent extensions, which 

are characterised by a conditional variance that is fully driven by past observations; and Stochastic Volatility (SV) models, 

where the volatility is a latent stochastic process driven by innovations that are inherent to the volatility process. This 

difference has two effects. First, since innovations enter SV models non-linearly, it is not possible to obtain an analytical 

expression of the likelihood, making it more complicated to estimate SV models. Second, the series of volatilities is far 

harder to extract in SV models than in ARCH extensions. Conditional variances in ARCH-based models are exact functions of 

past observations and can be exactly predicted (at least within the sample) as long as the relevant parameters are known 

(and in any case they can easily be estimated). The latent nature of the volatility in SV models renders its extraction far 

more difficult and signal extraction techniques are usually required. 

SV models are non-linear, but can be linearised by taking logarithms of the squares, after which they take the form 

of a sum of two components: the component leading the volatility, which is the component of interest or signal, and an 

added white noise. The volatility component can then be estimated by applying a filter for signal extraction. Parametric 

filters, such as the Kalman filter ( Harvey et al., 1994; Ruiz, 1994 ) or the optimal Wiener–Kolmogorov filter ( Harvey, 1998 ) 
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can be used for that purpose, but their performance and reliability depend on parametric restrictions and misspecification 

could possibly render the estimation of the signal incorrect. Semiparametric filters, such as the local Wiener–Kolmogorov 

in Arteche (2015a , 2015b ) relax the need for a complete, correct specification of the model but they still need to impose a 

partial behaviour in the series that cannot be ignored. 

This paper instead proposes a fully non-parametric, model-free, technique for signal extraction based on Singular Spec- 

trum Analysis (SSA). Its main advantages are its flexibility and generality due to its nonparametric nature and the fact that 

there is no need to impose any statistical restriction on the components to be extracted, which is a clear advantage over 

other filters for signal extraction such as those mentioned above. 

SSA is a relatively novel nonparametric technique for times series analysis. It is based on decomposing a time series as 

the sum of a finite number of elements (see Golyandina et al., 2001 , for a detailed description). After appropriate grouping, 

these elements can be identified as interpretable components of the time series and the volatility component can then be 

estimated by selecting those components that share similar characteristics with those in the signal to be estimated. We 

propose assessing that similarity using spectral tools. Taking into account that the spectral density function of the added 

noise is flat, all the relevant structure in the spectrum of the log of squares is due to the signal. The elements in the 

SSA are thus selected as those sharing a similar structure in their spectrum. This strategy has the main advantage of not 

requiring any parametric restrictions in the volatility component. It therefore allows for different forms of stationary and 

non-stationary volatilities, covering most of the processes that have been used to model volatility in financial time series. 

Only some spectral structure is required to identify the signal separately from the added noise characterised by a flat spec- 

trum. Low frequency spectral concentration, caused for example by persistent volatility and/or by level shifts, and seasonal 

or cyclical spectral peaks are the most frequent distinctive behaviours and those are precisely the situations on which we 

focus. 

The rest of the paper is organised as follows. Section 2 reviews the structure and characteristics of SV models. 

Section 3 introduces the strategy based on SSA that we propose for signal extraction and volatility estimation. Section 4 anal- 

yses its performance in a Monte Carlo analysis. Section 5 shows the applicability of the proposed technique for estimating 

the volatility of two real financial time series: a daily series of returns from the Dow Jones Industrial index and a series of 

intraday returns from the Spanish Ibex35 stock index. Finally, Section 6 concludes. 

2. Stochastic Volatility models 

SV models are defined as 

z t = σt ε t , (1) 

where σt = σ exp (v t / 2) for σ a positive constant scale factor, v t is the volatility component and ε t ∼ iid (0, 1) (see Taylor, 

1986 ). Taking the logs of the squares of z t in (1) we have 

y t = log z 2 t = μ + v t + ξt , (2) 

where μ = log σ 2 + E log ε 2 t and ξt = log ε 2 t − E log ε 2 t is i . i . d . with zero mean and variance σ 2 
ξ

. For example, if ε t ∼ N (0, 1) 

then ξ t is a centred log χ2 
1 variable with E log ε 2 t = −1 . 27 and σ 2 

ξ
= π2 / 2 . Apart from the constant μ, y t takes the form of a 

signal plus noise and the volatility component v t can be estimated by means of signal extraction techniques. 

Uncorrelation between signal and noise is usually assumed such that the autocovariance function of y t is 

γy (h ) = Ey t y t+ h = γv (h ) + σ 2 
ξ I h =0 , (3) 

where I h =0 = 1 if h = 0 and 0 otherwise. Consequently, the autocovariances of y t coincide with those of the signal v t and 

only the variance is affected by the noise. Note that uncorrelation between v t and ξ s does not preclude the existence of 

leverage in the form of correlation between ε s and v t , which may be allowed on a non contemporaneous basis to maintain 

the martingale difference character of z t . In fact, as long as the joint distribution of ε s and v t is symmetric around the origin 

(e.g., Gaussian, Student’s t or a Generalized Error Distribution among others) the possible correlation between the two does 

not preclude the absence of correlation between v t and ξ s (see Harvey et al., 1994 ). Higher order dependencies between v t 
and ξ s are also possible (see Arteche, 2015a ). Under these conditions the spectral density function of y t is 

f y (λ) = f v (λ) + 

σ 2 
ξ

2 π
for − π ≤ λ ≤ π, (4) 

and then any structure in f y ( λ) in the form of departures from being constant is due to the signal v t and can be used to 

identify the volatility component separately from the added noise. 

Originally, SV models assumed that v t was a stationary process, and the AR(1) was the process that attracted most inter- 

est in those first attempts (see Harvey et al., 1994 , among many others). An estimate of the autoregressive parameter that is 

positive and close to one is usually obtained when this model is fitted to real financial time series, which implies high per- 

sistence characterised by power concentration around frequency zero in f v (λ) . This high persistence found in most financial 

series led many authors to propose Long Memory in Stochastic Volatility (LMSV) models, where the power concentration in 
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