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Applications of functional data with large numbers of predictors have grown precipitously
in recent years, driven, in part, by rapid advances in genotyping technologies. Given the
large numbers of genetic mutations encountered in genetic association studies, statistical
methods which more fully exploit the underlying structure of the data are imperative for
maximizing statistical power. However, there is currently very limited work in functional
data with large numbers of predictors. Tools are presented for simultaneous variable selec-
tion and parameter estimation in a functional linear model with a functional outcome and
a large number of scalar predictors; the technique is called AFSL for Adaptive Function-on-
Scalar Lasso. It is demonstrated how techniques from convex analysis over Hilbert spaces

can be used to establish a functional version of the oracle property for AFSL over any real
separable Hilbert space, even when the number of predictors, I, is exponentially large com-
pared to the sample size, N. AFSL is illustrated via a simulation study and data from the
Childhood Asthma Management Program, CAMP, selecting those genetic mutations which
are important for lung growth.

© 2016 ECOSTA ECONOMETRICS AND STATISTICS. Published by Elsevier B.V. All rights
reserved.

1. Introduction

Many scientific areas are faced with the challenge of extracting information from increasingly large, complex, and highly
structured data sets. A great deal of modern statistical work focuses on developing tools for handling such data. Networks,
high dimensional data, images, functions, surfaces, or shapes, all present data structures which are not well handled un-
der a traditional univariate or multivariate statistical paradigm. In this paper we present a new methodology, which we
call Adaptive Function-on-Scalar Lasso, AFSL, for analyzing highly complex functional outcomes alongside large numbers of
scalar predictors. Such data is becoming increasingly common due to the prevalence of inexpensive genotyping technologies.
Genome-wide association studies, GWAS, examine hundreds of thousands or millions of genetic markers, attempting to find
those mutations which are associated with some outcome or phenotype. Many phenotypes of interest are now complex
outcomes, such as longitudinal measurements or biomedical images.

The functional linear model, FLM, is one of the primary modeling tools in FDA. There, one assumes that the outcome
is linearly related to some set of predictors. FLM are often categorized by whether the outcome, the predictor, or both
is functional (Reiss et al., 2010). While the literature on FLM is now vast, Morris (2015) outlines most of the key work
on low dimensional FLM. However, to date, relatively little has been done when one has a large number of predictors
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relative to the sample size, and of the work that does exist, nearly all of it is for scalar-on-function FLM, the opposite
setting we consider (Fan et al.,, 2015; Gertheiss et al.,, 2013; Lian, 2013; Matsui and Konishi, 2011). For the function-on-
scalar setting, we are aware of only two other works. Chen et al. (2016) consider a basis expansion approach with an
MCP style penalty and fixed number of covariates. They also use a pre-whitening technique to exploit the within function
dependence of the outcomes. Asymptotic theory is developed for a fixed number of predictors and basis functions. Barber
et al. (2016) developed the Function-on-Scalar LASSO, FSL, which allows for an exponential number of predictors relative to
the sample size and establishes optimal convergence rates of the estimates. In particular, it was shown that FSL achieves
the same rates of convergence as in the scalar case. However, as in the scalar case, this approach leads to estimates with a
non-negligible asymptotic bias due to the nature of the penalty.

To alleviate the bias problem inherent in FSL, we propose here an adaptive version, AFSL. In addition to providing a novel
statistical methodology, we develop a new theoretical framework needed to establish its asymptotic properties. In particular,
functional subgradients and tools from convex analysis over Hilbert spaces are needed. In contrast, theory for FSL is built
entirely on basic inequalities and concentration inequalities, no theory for subgradients was required. The contributions of
this paper are thus as follows (1) we define a new variable selection and estimation tool, AFSL, which alleviates the bias
problems of FSL (2) we demonstrate how several tools and techniques from convex analysis can be used for functional data
problems and (3) we define a functional version of the oracle property and show that AFSL achieves it. Additionally, we
also go a step beyond the traditional oracle property which states that the estimates recover the correct support and are
asymptotically normal, by showing that the oracle estimate and the AFSL estimate are actually asymptotically equivalent.

The remainder of the paper is organized as follows. In Section 2, we provide the necessary background material. In
Section 3 we outline the AFSL framework and in Section 4 we establish the oracle property. A simulation study and an
application to the Childhood Asthma Management Program, CAMP, is given in Section 5. Concluding remarks are given in
Section 6. All theory is provided in the Appendix.

2. Background

Let # denote a real separable Hilbert space, (-, -) its inner product, and ||-|| the inner product norm. In a function-on-
scalar linear model we have that

1
Yo=) Xaffi +&n=X, "+ 1=n<N, (1)
i=1

where Y, € # is a functional outcome, 8 € # is a functional regression parameter, e € # is a functional error, and X;; € R
is a scalar predictor. Throughout, we will use a x to denote the true data generating parameter so as to distinguish from S,
which will usually represent a dummy variable or the argument of a function. The most commonly encountered space for H
is L2[0, 1], i.e., the outcome is a function of time, though other spaces are used as well including spatial domains or product
spaces (for functional panels or multivariate functional data). If one wants to incorporate smoothness assumptions of the
data then one can work with Sobolev spaces or Reproducing Kernel Hilbert Spaces, RKHS. We provide a few examples here
to help emphasize the functional nature of the data and highlight the wide impact of our theory and methods.

Example 1. Let H = L2(D), where D is a compact subset of RY. Then we write the model

1
Yu(s) = aniﬂf(s) +&n(S) seD,
i=1

and the norm is written as
IxI? = [ x(s) ds.
D

Example 2. Let % = H!-2[0, 1], i.e., the Sobolev space of real valued functions over the unit interval with one square inte-
grable derivative. Then we have

I
Ya(t) =) Xufi () +ea(t)  te[0,1],

i=1

with the norm given by
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Example 3. Let #, be an RKHS of functions over the unit interval with kernel operator K. Then we have

I
Ya(t) = ZXni.Bf(t) +é&n(t),

i=1
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