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A B S T R A C T

Background and purpose: Magnetic resonance imaging (MRI) plays an important role in the field of MR-guided
radiotherapy or personalised radiation oncology. The application of quantitative image analyses like radiomics
as well as automated tissue characterisation is frequently disturbed by the effect of intensity non-uniformity. We
present a novel fully automated physical correction model (PCM) for the reduction of intensity non-uniformity.
Materials and methods: The proposed algorithm is based on a 3D physically motivated correction model, which
maximises the image information expressed by the Shannon entropy. The PCM was evaluated using the coef-
ficient of variation (cv) on 176 MRI datasets of the human brain and abdomen acquired on 1.5 Tesla and 3 Tesla
MR scanners. The resulting cv was compared to the cv of the original images and to the results of the established
N4 algorithm.
Results: The PCM algorithm significantly improved the image quality of all considered 1.5 and 3.0 Tesla MR
scans compared to the original images (p < .01). Furthermore, the PCM outperformed or competed with the N4
algorithm in terms of image quality. Additionally, the PCM approach preserved the tissue signal of different
tissue types due to smooth correction gradients.
Conclusion: The proposed PCM algorithm led to a significantly improved image quality compared to the ori-
ginally acquired images, suggesting that it is applicable to the correction of MRI data. Thus it may help to reduce
intensity non-uniformity which is an important step for advanced image analysis.

1. Introduction

Magnetic resonance imaging (MRI) is an established non-invasive
imaging technique for clinical diagnostic and treatment [1]. Due to its
high soft-tissue contrast MRI received increasing attention in radiation
oncology over the last years [2–5]. For instance, MRI plays an im-
portant role in the field of MR-guided radiotherapy or personalised
radiation oncology which aims to characterise the tumour phenotype
based on imaging data (radiomics) [6,7].

Typical MR images are influenced by artefacts caused by different
sources. One of the most frequent artefacts is intensity non-uniformity
(bias) [8,9]. It occurs as a smooth intensity variation across the image,
such that the intensity of the same tissue changes within the image

region. It may be caused by a number of factors, such as magnetic field
or radio frequency (RF) inhomogeneity of the MRI scanner and patient
anatomy [10]. Intensity non-uniformity is usually hardly perceived by
the human observer. However, automatic image segmentation or re-
gistration algorithms are very sensitive to such variations of image in-
tensities [11]. Also, the performance of radiomics risk models may be
negatively influenced, e.g., due to a high variation in the expression of
imaging biomarkers. Therefore, a reduction of intensity non-uniformity
prior to automated quantitative image analyses is required.

During the last years, several correction methods have been pro-
posed to correct bias in MRI by numerous authors [12,13]. For instance,
George et al. [14] proposed a 2D non-iterative multi-scale approach
using Log-Gabor filter bank. However, this approach used only 2D
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instead of the entire 3D image information to estimate the bias cor-
rection field which may reduce the correction performance. In contrast,
Chang et al. [15] proposed a higher-order variational model for bias
correction for brain MR scans. Furthermore, Ivanovska et al. [16]
presented a level-set based approach for simultaneous intensity non-
uniformity correction and segmentation of MR images. Segmentation-
based bias correction methods usually depend on the accuracy of the
segmentation. This may lead to good correction results in the case of
images with a homogenous tissue structure, such as brain MR scans.
However, for the correction of more heterogeneous parts, e.g., abdomen
scans, the correction may lead to poor results caused by imprecise
segmentation. A further class of correction algorithms are histogram
based methods. They estimate the correction function directly from the
image intensity histograms. A typical strategy is based on an iterative
deconvolution approach which attempts to maximise the high fre-
quency content of the tissue intensity distribution in terms of an opti-
misation process [17]. A well-known and widely used correction ap-
proach of this category is the N4 algorithm [18]. While the N4 generally
performs well in the case of simple tissue structures, a strong intensity
correction can occur when the tissue structures are more complex.

Therefore, we propose a novel fully automated approach for the
correction of intensity non-uniformity for retrospective evaluation of
MR images, which we call physical correction model (PCM). The PCM is
based on the assumption that the image signal emitted by the tissue is
slowly decreasing to the image centre caused by the physical con-
struction of an MRI surface coil array (e.g., head coil). The estimation of
the correction function is performed during an optimisation process
with the aim to maximise the image information expressed by the
Shannon entropy [19]. We applied the PCM to simulated and clinical
data of the human brain and abdomen to evaluate its correction per-
formance. Furthermore, we compared the achieved results with the
established N4 correction algorithm. In addition, the tissue signal was
assessed between different tissue types for the abdomen dataset.

2. Material and methods

2.1. Physical correction model

Intensity non-uniformity in MRI is induced by a number of factors,
such as magnetic field inhomogeneity, radio frequency or patient
anatomy [9,10,20,21]. The proposed PCM is based on the assumption
that the effect of intensity non-uniformity in MRI occurs because the
image signal emitted by the tissue is slowly decreasing to the coil array
centre. We hypothesised that this decrease is basically caused by
damping of the RF intensity emitted by the coil and the tissue response.
To confirm this hypothesis we performed an experiment using a cy-
lindrical water phantom, which should have a uniform intensity in the
image region. The image volume was acquired with a 1.5 Tesla MR
scanner using a typical MRI receiver head coil array with eight single
coil segments. Further details about the experiment are described in
Supplement A. Based on these experimental results we defined the
physical correction model f depending on the image coordinates (x, y, z)
by
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The gradually decreasing image signal to the coil centre (xm, ym)
was modelled by an exponential base function for each coil segment
i= 1...n and the exponential decay rate of coil segment i is described by
ai. The functions fix and fiy describe the geometric location of coil i,
where di is the distance from image centre to coil i, α is a constant angle
between the coil segments and ω is the angular shift. Furthermore, the
MRI image signal in longitudinal direction was described by a Gaussian
base function fz, in which vz describes the shift in z-direction and σ the
standard deviation of the Gaussian function. In addition, we included
the linear shifts Sx and Sy in z-direction for each horizontal and vertical
position of the patient on the scanner table. The parameter q1 is a global
pre-factor to scale the whole correction function. Fig. 1 shows a sche-
matic 2D-view of a typical MRI head coil as well as the geometric
parameters of the introduced model. For a typical head coil array,
which consists for example of eight single coil segments (n=8), the
proposed correction model has in total 27 free parameters. Three of
these parameters, xm, ym and α=360 n−1 are given by the geometry of
the coils which can be extracted, e.g., from the meta information of the
image file.

To correct intensity non-uniformity in MRI images, an established
formation model is a simplified multiplicative approach [22,23]. Ac-
cording to this approach, the acquired image

I(x, y, z) was obtained by
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where (x, y, z) is the spatial position, t is the wanted uniform signal
emitted by the tissue, f is an unknown non-uniformity function and ξ
describes independent additive noise. The noise will be neglected in the
following considerations. The multiplicative model (7) can be used to
obtain the uniform image t which is emitted by the tissue,
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To compensate intensity non-uniformity according to (8) we esti-
mated the function f by (1). The optimal parameters of this model are
determined by maximisation of the image information, which was ex-
pressed by the fitness function F,

= +F I E I e( ) ( ) , (9)

where E(I) is the Shannon entropy and e is an additional penalty term.
The Shannon entropy E(I) is defined as
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It is based on the intensity distribution of the MRI image I computed
by a grey value histogram. Furthermore, it contains the volume X of the
spatial domain as normalisation factor, the number of bins B of the

Fig. 1. Illustration of the geometric parameters of the physical correction model (PCM)
for a typical MRI head coil consisting of eight coil segments.
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