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A B S T R A C T

In the engineering practices, the information or the sample data to construct the precise probabilistic char-
acteristics are usually insufficient. Aim at this issue, a non-probabilistic interval process model, whose upper and
lower bounds can be determined on the basis of limited data, is introduced to describe the time-varying un-
certainties. To obtain the dynamic response bounds of the structure under the non-probabilistic interval process
model, a numerical method is proposed, namely the interval Chebyshev surrogate model based on the Karhunen-
Loève expansion (ICSM-KLE), are proposed. In this method, the time-dependency between the adjacent values of
an interval process is quantified by the Karhunen-Loève expansion. And then, the structural dynamic response
bounds of the time-varying uncertain structure is respectively approximated by the Chebyshev surrogate model.
Two numerical examples, including a multi-degree-of-freedom linear vibration system and a continuum shell
structure, verify that the accuracy of the ICSM-KLE is very high, when compared with the referenced results
provided by the direct Monte Carlo method. Thus, the ICSM-KLE provides a good platform for the non-prob-
abilistic interval process analysis of the time-varying uncertain structures with limited information.

1. Introduction

Due to the aggressive environmental factors, the manufacturing and
assembling errors, the material degenerations and losses, the un-
predictable exterior excitations and so on, uncertainties unavoidably
exist in various engineering structures. Without considering these ubi-
quitous uncertainties, the response prediction and the optimal design of
a structure may fail. Up to now, the main nondeterministic models to
deal with the structural uncertainties are the stochastic variable model
and the stochastic process model [1–5]. The first one is developed for
the time-independent uncertain parameters. The second one is pro-
posed for the time-varying uncertain parameters. Based on these non-
deterministic models, various of numerical methods such as the Monte
Carlo method, the stochastic perturbation method and the spectral
stochastic method have been proposed.

The direct Monte Carlo method is the most robust method for the
response analysis of stochastic structures [6–9]. Because of its prob-
ability convergent characteristics, the Monte Carlo method with a large
number of samples can produce an excellently precise solution for the
stochastic problem. The critical defect of the Monte Carlo method is its
fatally computational burden, especially for large-scale engineering
structures. To greatly improve the computational efficiency of the

Monte Carlo method without deteriorating its accuracy, several variants
including an important sampling Monte Carlo method [10], a subset
simulation Monte Carlo method [11–13] and a line sampling Monte
Carlo method [14,15] have been developed. The accuracies of these
variants significantly depend on their sampling rules. The stochastic
perturbation method is another effective numerical method for the re-
sponse analysis of the stochastic structure. Culla and Carcaterra [16]
proposed a conventional perturbation-statistical perturbation method
(CPSPM) and a statistical linearization-statistical perturbation method
(SLSPM) for the investigation of the statistical moment of a floating
body excited by random waves. Kamiński [17,18] developed a sto-
chastic perturbation method to predict the probabilistic moments of the
stochastic structure with the Gaussian elastic modulus. Muscolino et al.
[19–21] have systematically investigated the dynamic response of the
deterministic and nondeterministic structures under the Gaussian sto-
chastic excitations. Xia et al. [22] proposed a transformed perturbation
stochastic method based on a change of variable technique for the re-
sponse analysis of the stochastic systems. Do et al. [23,24] creatively
constructed a multiple random field model and provided a stochastic
Galerkin scaled finite element method for the response analysis of the
stochastic structures. Wu and Zhong [25] have predicted the dynamic
response of the stochastic structure with uncorrelated or correlated
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random variables. Zhang et al. [26,27] developed a stochastic level set
perturbation for the robust topology optimization of the stochastic
structure with the uncertain geometric parameters and the uncertain
harmonic excitations.

On the whole, the stochastic numerical method is a very mature
method for the uncertain problems with enough information. However,
in many engineering practices, it is extremely cost and even impossible
to obtain sufficient sample data to accurately evaluate the statistical
characteristics of uncertain parameters. When the estimated probabil-
istic parameters deviate from their real values, the responses of un-
certain structures may become unreliable, which will provide a dis-
astrous guide in the design of engineering systems. Under this
circumstance, the interval model is an important alternative because of
its excellent ability to deal with uncertainties with limited sample data
[28]. In the interval model, the uncertain parameters are treated as the
interval variables or the interval fields whose variational ranges are
well defined. Based on the interval model, several numerical methods
have been developed. Qiu et al. [29,30] proposed an interval pertur-
bation method for the response analysis of the structures and the
nonlinear systems with interval uncertainties. Xia et al. [31,32], by
introducing a modified Neumann expansion with the higher order
terms, improved the accuracy of the interval perturbation method.
Wang et al. [33–36] extended the modified interval perturbation
method for the investigation of the exterior acoustic field, the steady-
state temperature field, the steady-state heat convection-diffusion pro-
blem and the eigenvalues of structure. Luo et al. [37–39] proposed a
non-probabilistic reliability-based topology optimization for the geo-
metrically nonlinear structures and the two-material structures. Wu
et al. [40–42] proposed a Chebyshev surrogate model for the nonlinear
dynamic systems, the multibody mechanical systems and the structural
topology optimization with interval uncertainties. Sofi et al. [43–47]
introduced the interval field model for the description of spatially de-
pendent uncertainties. Gao et al. [48–54] have systematically in-
vestigate the linear and nonlinear structures under the interval field
model and proposed hybrid uncertain analysis method under hybrid
random and interval field model. Xu et al. [55–57] proposed an or-
thogonal polynomial chaos expansion for the uncertain propagation of
the structural-acoustic systems or the structural vibration systems with
interval parameters. In addition to the above method, Wang et al.
[58–61] developed a Bayesian approach for characterizing the site-
specific joint probability distribution of important soil parameters in
evaluating stability and deformation of geotechnical structures.

The above interesting interval numerical methods are based on the
time-invariant interval models in which the variational ranges of un-
certain parameters are constant in the considered time periods.
Unfortunately, for the most practical problems, parameters related with
the degrading material properties and the dynamic loads are always
time-varying. These time-varying uncertainties play significant roles on
the whole-life safety assessment of the engineering system. Without
considering these time-varying uncertainties, a disastrous consequence
may be yielded. To describe the time-varying uncertainties with the
limited information, Jiang et al. [9,62,63] proposed a non-probabilistic
interval process model and introduced a Monte Carle method to predict
the dynamic response of the structure. The dynamic responses of the
time-varying uncertain structures are derived as the non-probabilistic
interval processes with the maximal and minimal response bounds,
which can then provide a significant information for the reliability-
based design of the dynamic engineering structures [64–67].

In this paper, we will investigate the dynamic response of the time-
varying uncertain structures. First, the non-probabilistic interval pro-
cess model is introduced to describe the time-varying uncertainties with
limited information. And then, the Karhunen-Loève (KL) expansion is
employed to quantify the time-dependency of the non-probabilistic
interval process. Furthermore, a numerical method, named as the in-
terval Chebyshev surrogate model based on the KL expansion (ICSM-
KLE), is proposed. In the ICSM-KLE, the dynamic response of the

structure is approximated by the Chebyshev surrogate model with a
high computational efficiency.

2. Non-probabilistic interval process model based on KL
expansion

In many engineering practices, the information to determine the
precise probabilistic characteristics of the time-varying uncertainties is
usually insufficient. In this case, a non-probabilistic interval process
model (shown in Fig. 1) will be introduced to describe the uncertainty
of a time-varying parameter.

As is shown in Fig. 1, a non-probabilistic interval process can be
expressed as =b t b t b t( ) [ ( ), ( )]I , in which b t( ) and b t( ) represent the
lower and upper bounds of the non-probabilistic interval process b t( )I .
It should be noted that b t( ) and b t( ) are functions of the time t. At any
time tj, the uncertainty of the non-probabilistic interval process b t( )I

can be expressed as an interval variable b t( )jI with a lower bound b t( )j
and an upper bound b t( )j . Generally, the interval process is treated as a
series of interval variables and the time dependency between adjacent
interval variables are neglected. The KL expansion has been successfully
used to track the time dependency between adjacent values of a sto-
chastic process. In this section, the KL expansion is further developed to
quantify the time dependency of a non-probabilistic interval process.

A dimensionless interval process function =d t d t d t( ) [ ( ), ( )]I is de-
fined. The midpoint value is zero and the uncertainty is ⩽d tΔ ( ) 1.
Based on this dimensionless interval function, the non-probabilistic
interval process b t( )I can be defined as follow:

= +b t b t d t( ) ( )[1 ( )]I m I (1)

where the midpoint value b t( )m , the variational range b tΔ ( ) of b t( )I and
d tΔ ( ) are given as
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where mid{·} expresses the midpoint of the non-probabilistic interval
process function.

The time-dependency of a non-probabilistic interval process should
be governed by a real, symmetric, non-negative, deterministic and
bounded ′f t t( , ) function, defined as
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The time-dependency function ′f t t( , ) can be considered as a non-
probabilistic counterpart of the auto-correlation function in the sto-
chastic process. By analogy with the classic stochastic process model,
we can construct an interval process model. To gain a further insight
into this concept, we firstly review a homogeneous Gaussian stochastic
process, defined as

= +∼ ∼b t b t d t( ) ( )[1 ( )]m (4)

Fig. 1. A non-probabilistic interval process.
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