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ARTICLE INFO ABSTRACT

Nonlinear fluid viscous dampers have been widely used in energy-dissipation structures. This paper is devoted to
the stochastic optimal design of viscous dampers for large-scale structures under non-stationary random seismic
excitations. The optimization problem is formulated as the minimization of the standard deviation of a target
displacement component subjected to the constraint on the standard deviations of damping forces of viscous
dampers, and the method of moving asymptotes (MMA), a gradient-based optimization method, is employed to
solve the optimization problem involved. An effective dimension-reduced explicit method is first proposed for
fast nonlinear time-history analysis of structural responses and the corresponding sensitivity analysis with re-
spect to the parameters of viscous dampers, in which only a small number of degrees of freedom associated with
the viscous dampers need to be considered in the iteration scheme, leading to extremely low computational cost
in the nonlinear analysis. Then the proposed dimension-reduced explicit method is further used to conduct
sample analyses with high efficiency in Monte-Carlo simulation (MCS) so as to obtain the statistical moments of
critical responses and the relevant moment sensitivities required in the process of optimal design. To demon-
strate the feasibility of the proposed method, the stochastic optimal design of viscous dampers is carried out for a
large-scale suspension bridge with a main span of 1688 m, and the mean peak values of critical responses with
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the optimal parameters of viscous dampers are finally obtained for the design purpose of the bridge.

1. Introduction

The control of structural vibrations produced by earthquakes can be
carried out by providing active or passive counter forces [1-3]. For
active control of structures, Li et al. [4,5] recently proposed a novel
stochastic optimal control scheme based on the probability density
evolution method [6]. Zhu and his co-authors [7,8] developed a sto-
chastic optimal control strategy for nonlinear systems with actuator
saturation based on the stochastic averaging method and stochastic
dynamical programing principle. On the other hand, passive control
techniques have also received considerable attention and have been
widely applied to civil structures. Among various means of passive
control, energy-dissipation devices are frequently employed to absorb a
portion of earthquake-induced energy so as to reduce energy dissipation
demand on primary structural members and minimize possible struc-
tural damage. The use of supplemental energy-dissipation systems has
proven to be an effective approach for enhancing structural

performance against seismic hazard [9].

To obtain a better performance of structural control, the parameters
of energy-dissipation devices need to be determined through optimal
design procedures. In engineering practice, deterministic structural
optimization techniques are usually used to obtain the device para-
meters under seismic excitations [10-15]. However, due to the intrinsic
uncertainties of ground motions, deterministic structural optimization
cannot capture the optimal performance of energy-dissipation struc-
tures from a probabilistic point of view. Therefore, stochastic optimal
design methods are required to take into account the stochastic nature
of earthquakes. Ni et al. [16] conducted a parametric study on the
optimal parameters, positions and numbers of the nonlinear hysteretic
damping devices connecting two adjacent buildings exposed to sta-
tionary random seismic excitations. Basili and De Angelis [17] dealt
with the problem of optimal passive control based on parametric stu-
dies on coupled structures with nonlinear hysteretic connections using a
simple two-degrees-of-freedom model subjected to stationary white-
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noise and filtered white-noise seismic excitations. Ok et al. [18] used
the genetic algorithm to investigate the optimal design of nonlinear
hysteretic dampers connecting two adjacent structures under ground
motion modelled as stationary filtered white-noise. Martinez et al. [19]
employed a sequential quadratic programming procedure to optimally
define the locations and sizes of nonlinear hysteretic dampers on planar
structures to meet an expected level of performance under stationary
seismic excitations.

It can be seen from the above literatures that the stochastic optimal
designs of nonlinear damping devices were primarily limited to the
problems of stationary seismic excitations. However, seismic excita-
tions are in essence non-stationary random processes, and thus non-
stationary random vibration analysis should be taken into considera-
tion. Spanos and his co-authors have made much progress towards
determining the evolutionary stochastic response of nonlinear systems
[20-23], and recently Kougioumzoglou et al. [24,25] have also pro-
posed the Wiener path integral technique for non-stationary stochastic
response analysis of nonlinear systems. As for the stochastic optimal
design of energy-dissipation structures, only few works were presented
in the literatures involving non-stationary seismic excitations. Jensen
and Sepulveda [26] proposed a reliability-based optimal design ap-
proach for a four-storey reinforced concrete building with hysteretic
energy dissipators under ground motion modelled as non-stationary
stochastic process, in which subset simulation (SS) was employed to
solve the reliability problem involved. Altieri et al. [27] also proposed a
robust reliability-based optimization tool with SS for the design of
viscous coefficients of nonlinear dampers of a three-storey steel
building frame by modeling the non-stationary seismic input through a
stochastic ground motion model. Gidaris and Taflanidis [28] carried out
a life-cycle cost based optimal design of nonlinear viscous dampers in a
three-storey office building subjected to non-stationary ground motion,
and the probabilistic quantities required in the optimization process
were calculated through Monte-Carlo simulation (MCS). In the above
three references, the repetitive sample analyses involved in the sto-
chastic simulation were conducted using the traditional nonlinear time-
history analysis method, which would be time-consuming for large-
scale engineering structures.

The optimization algorithms can be categorized as either non-gra-
dient-based algorithms or gradient-based algorithms. The non-gradient-
based algorithms, for instance, the genetic algorithm, are primarily
used for global optimization problems with a large number of function
evaluations, and therefore they are impractical for optimization of real
engineering structures [29]. The gradient-based algorithms are in
general more efficient for high-dimensional, nonlinear constrained and
convex optimal problems [30]. A variety of gradient-based algorithms,
including the sequential linear programming methods, the sequential
quadratic programming methods and the convex approximation
methods, are available for solving optimization problems [31]. In par-
ticular, the method of moving asymptotes (MMA) [32], one of the
convex approximation methods, has been proven to be an appropriate
approach to solve structural optimization problems, and therefore it is
employed in the present study for optimal design of energy-dissipation
structures.

In recent years, Su and his co-authors have proposed and developed
an explicit time-domain method [33-35], which is mainly devoted to
solving non-stationary random vibration problems of linear and non-
linear large-scale structures. On this basis, an efficient dimension-re-
duced explicit method is proposed in this study for stochastic optimal
design of nonlinear viscous dampers of energy-dissipation structures
under non-stationary seismic excitations. The optimization problem is
formulated as the minimization of the standard deviation of a target
displacement component subjected to the constraint on the standard
deviations of damping forces of viscous dampers, and then the MMA is
used to solve the stochastic optimal problem involved. The non-sta-
tionary random responses and their sensitivities with respect to design
variables required in the process of optimal design are obtained using
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MCS with the high efficient dimension-reduced explicit method. To il-
lustrate the accuracy and efficiency of the present approach, stochastic
optimal design of viscous dampers for a suspension bridge with a main
span of 1688 m is conducted, and the mean peak values of critical re-
sponses of the bridge are also obtained with the optimal parameters of
viscous dampers.

2. Nonlinear time-history analysis based on dimension-reduced
explicit iteration scheme

2.1. Time-domain explicit expressions of dynamic responses

For a multi-degree-of-freedom energy-dissipation structure
equipped with n nonlinear viscous dampers subjected to seismic ex-
citations, the nonlinear equation of motion can be expressed as

MU + CU + KU + Fp(Up) = —MEX (¢) (€))

where M, C and K denote the mass, damping and stiffness matrix of the
structure without viscous dampers, respectively; U, U and U denote the
time-dependent nodal displacement, velocity and acceleration vector of
the energy-dissipation structure, respectively; E denotes the orientation
vector of the seismic excitation; X (t) denotes the ground motion ac-
celeration; Up denotes the velocity vector of the nodes of viscous
dampers; and Fp(Up) denotes the nonlinear damping force vector of
viscous dampers, which can be written as

Fp(Up) = Eif; () + Eof, (1) + --+Ef, (1) )

where f (t) (k =1, 2, ---,n) is the nonlinear damping force of the kth
viscous damper, and E; is the orientation vector of the kth nonlinear
damping force.

The nonlinear damping force-velocity relation for fluid viscous
dampers can be analytically expressed as a fractional velocity power
law [36]

f @) = sign(w)clvl® 3)

where f(t) denotes the damping force of the viscous damper; sign(-)
denotes the sign function; v denotes the nodal relative velocity between
damper ends; and ¢ and « denote the damping coefficient and the ve-
locity exponent of the viscous damper, respectively. Since the con-
stitutive law of fluid viscous dampers is highly nonlinear, the whole
system has inherent nonlinear properties even if the structure behaves
linearly [37,38].

Moving the nonlinear damping force vector Fp(Up) to the right-
hand side of Eq. (1), one can obtain the following quasi-linear equation
of motion as

MU + CU + KU = LF(¢) (O]
where

FO=1X® L®O LO-LOI 5)
and

L=-[ME E, E,--E, (6)

Evidently, F(t) is composed of the ground motion acceleration and
the nonlinear damping forces associated with all the viscous dampers,
and therefore is termed as the equivalent excitation vector for the quasi-
linear equation of motion. L is the corresponding orientation matrix of
F(t).

For the quasi-linear equation of motion shown in Eq. (4), define the
state vector as V = [UT UT]T. Then, the recurrence formula for the state
vector can be written as

Vi=TV.1+ QF. + QE (=12, ) )

where [ is the number of time steps for time-history analysis; V;, Vi_1,
and F_; denote V(t;), V(ti—1), F(t,) and F(t_1), respectively, with
t; = iAt, t;_; = (i—1)At and At being the time step; and T, Q; and Q, can
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