
Please cite this article in press as: A. Bonato, et al., The robot crawler graph process, Discrete Applied Mathematics (2018),
https://doi.org/10.1016/j.dam.2018.01.018.

Discrete Applied Mathematics () –

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

The robot crawler graph process
Anthony Bonato a, Rita M. del Río-Chanona b, Calum MacRury c,
Jake Nicolaidis a, Xavier Pérez-Giménez d, Paweł Prałat a,*, Kirill Ternovsky a

a Ryerson University, Canada
b Universidad Nacional Autónoma de Mexico, Mexico
c McGill University, Canada
d University of Nebraska-Lincoln, USA

a r t i c l e i n f o

Article history:
Received 27 October 2015
Received in revised form 11 November 2017
Accepted 24 January 2018
Available online xxxx

Keywords:
Deterministic walk
Graph searching
Random graph
Preferential attachment model

a b s t r a c t

Information gathering by crawlers on the web is of practical interest. We consider a
simplifiedmodel for crawling complexnetworks such as thewebgraph,which is a variation
of the robot vacuum edge-cleaning process of Messinger and Nowakowski. In our model,
a crawler visits nodes via a deterministic walk determined by their weightings which
change during the process deterministically. The minimum, maximum, and average time
for the robot crawler to visit all the nodes of a graph is considered on various graph classes
such as trees, multi-partite graphs, binomial random graphs, and graphs generated by the
preferential attachment model.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A central paradigm inweb search is the notion of a crawler, which is a software application designed to gather information
from web pages. Crawlers perform a walk on the web graph, visiting web pages and then traversing links as they explore
the network. Information gathered by crawlers is then stored and indexed, as part of the anatomy of a search engine such
as Google or Bing. See [11,18,27] and the book [24] for a discussion of crawlers and search engines.

Walks in graph theory have been long-studied, stretching back to Euler’s study of the Königsberg bridges problem in
1736, and including the travelling salesperson problem [3] and the sizeable literature on Hamiltonicity problems (see, for
example, [30]). An intriguing generalization of Eulerian walks was introduced by Messinger and Nowakowski in [25], as a
variant of graph cleaning processes (see, for example, [2,26]). The reader is directed to [9] for an overview of graph cleaning
and searching.

In the model of [25], called the robot vacuum, it is envisioned that a building with dirty corridors (for example, pipes
containing algae) is cleaned by an autonomous robot. The robot cleans these corridors in a greedy fashion, so that the next
corridor cleaned is always the ‘‘dirtiest’’ to which it is adjacent. This is modelled as a walk in a graph. The robot’s initial
position is any given node, with the initial weights for the edges of the graph G being −1, −2, . . . ,−|E(G)| (each edge has a
different value). At every step of the walk, the edges of the graph will be assigned different weights indicating the last time
each one was cleaned (and thus, its level of dirtiness). It is assumed that each edge takes the same length of time to clean,
and so weights are taken as integers. In such a model, it is an exercise to show that for a connected graph, one robot will
eventually clean the graph (see [25]).

* Corresponding author.
E-mail addresses: abonato@ryerson.ca (A. Bonato), ritamaria@ciencias.unam.mx (R.M. del Río-Chanona), hc509500@dal.ca (C. MacRury),

jnicolai@ryerson.ca (J. Nicolaidis), xperez@ryerson.ca (X. Pérez-Giménez), pralat@ryerson.ca (P. Prałat), kirill.ternovsky@ryerson.ca (K. Ternovsky).

https://doi.org/10.1016/j.dam.2018.01.018
0166-218X/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.dam.2018.01.018
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:abonato@ryerson.ca
mailto:ritamaria@ciencias.unam.mx
mailto:hc509500@dal.ca
mailto:jnicolai@ryerson.ca
mailto:xperez@ryerson.ca
mailto:pralat@ryerson.ca
mailto:kirill.ternovsky@ryerson.ca
https://doi.org/10.1016/j.dam.2018.01.018

Please cite this article in press as: A. Bonato, et al., The robot crawler graph process, Discrete Applied Mathematics (2018),
https://doi.org/10.1016/j.dam.2018.01.018.

2 A. Bonato et al. / Discrete Applied Mathematics () –

In the robot vacuum model, let s(G) and S(G) denote the minimum and maximum number of time-steps over all edge
weightings, respectively, when every edge of a graph G has been cleaned. As observed in [25], if G is an Eulerian graph, then
we have that s(G) = |E(G)|, and moreover the final location of the robot after the first time every edge has been cleaned is
the same as the initial position. Li and Vetta [22] gave an interesting example where the robot vacuum takes exponential
time to clean the graph. Let Se be the maximum value of S(G) over all connected graphs G containing exactly e edges. It is
proven in [22] that there exists an explicit constant d > 0 such that, for all e, Se ≥ d(3/2)e/5−1/2.Moreover, Se ≤ 3e/3+1

−3.
An analogous result was independently proven by Copper et al. [14] who analysed a similar model to the robot vacuum. The
‘‘self-stabilization’’ found in robot vacuum is also a feature of so-called ant algorithms (such as the well-known Langton’s
ant which is capable of simulating a universal Turing machine; see [17]). The robot vacuum model can be regarded as an
undirected version of the rotor–router model; see [29,31].

In the present work, we provide a simplified model of a robot crawler on the web, based on the robot vacuum paradigm
of [22,25] described above. We note that the paper is the full version (with full proofs and additional results) of the
proceedings version of the paper [8]. In our model, the crawler cleans nodes rather than edges. Nodes are initially assigned
unique non-positive integer weights from {0, −1, −2, . . . ,−|V (G)| + 1}. In the context of the web or other complex
networks, weights may be correlated with some popularity measure such as in-degree or PageRank. The robot crawler starts
at the dirtiest node (that is, the one with the smallest weight), which immediately gets its weight updated to 1. Then at each
subsequent time-step it moves greedily to the dirtiest neighbour of the current node. On moving to such a node, we update
the weight to the positive integer equalling the time-step of the process. The process stops when all weights are positive
(that is, when all nodes have been cleaned). Note that while such a walk by the crawler may indeed be a Hamilton path, it
usually is not, and someweightings of nodeswill result inmany re-visits to a given node. Similarmodels to the robot crawler
have been studied in other contexts; see [20,23,29].

The paper is organized as follows. A rigorous definition of the robot crawler is given in Section 2. We consider there the
minimum,maximum, and average number of time-steps required for the robot crawlermodel. The connections between the
robot crawler and robot vacuum are discussed in Section 3. In Section 4, we give asymptotic (and in some cases exact) values
for these parameters for paths, trees, and complete multi-partite graphs. In Section 5, we consider the average number of
time-steps required for the robot crawler to explore binomial randomgraphs. The robot crawler is studied on the preferential
attachment model, one of the first stochastic models for complex networks, in Section 6.

Throughout, we consider only finite, simple, and undirected graphs. For a given graph G = (V , E) and v ∈ V ,N(v) denotes
the neighbourhood of v and deg(v) = |N(v)| its degree. For background on graph theory, the reader is directed to [30]. For a
given n ∈ N, we use the notation Bn = {−n+ 1, −n+ 2, . . . ,−1, 0} and [n] = {1, 2, . . . , n}. All logarithms in this paper are
with respect to base e. We say that an event An holds asymptotically almost surely (a.a.s.) if it holds with probability tending
to 1 as n tends to infinity. All asymptotics throughout are as n → ∞ (we emphasize that the notations o(·) and O(·) refer to
functions of n, not necessarily positive, whose growth is bounded). For simplicity, wewill write f (n) ∼ g(n) if f (n)/g(n) → 1
as n → ∞ (that is, when f (n) = (1 + o(1))g(n)).

2. Definition and properties

We now formally define the robot crawler model and the various robot crawler numbers of a graph. The robot crawler
RC(G, ω0) =

(
(ωt , vt)

)L
t=1 of a connected graph G = (V , E) on n nodes with an initial weighting ω0 : V → Bn, that is a

bijection from the node set to Bn, is defined as follows.

(1) Initially, set v1 to be the node in V with weight ω0(v1) = −n + 1.
(2) Set ω1(v1) = 1; the other values of ω1 remain the same as in ω0.
(3) Set t = 1.
(4) If all the weights are positive (that is, minv∈Vωt (v) > 0), then set L = t , stop the process, and return L and

RC(G, ω0) =
(
(ωt , vt)

)L
t=1.

(5) Let vt+1 be the dirtiest neighbour of vt . More precisely, let vt+1 be such that

ωt (vt+1) = min{ωt (v) : v ∈ N(vt)}.

(6) ωt+1(vt+1) = t + 1; the other values of ωt+1 remain the same as in ωt .
(7) Increment to time t + 1 (that is, increase t by 1) and return to 4.

If the process terminates, then define

rc(G, ω0) = L,

that is rc(G, ω0) is equal to the number of steps in the crawling sequence (v1, v2, . . . , vL) (including the initial state) taken
by the robot crawler until all nodes are clean; otherwise rc(G, ω0) = ∞. We emphasize that for a given ω0, all steps of the
process are deterministic. Note that at each point of the process, the weightingωt is an injective function. In particular, there
is always a unique node vt+1, neighbour of vt of minimumweight (see step (4) of the process). Hence, in fact, once the initial
configuration is fixed, the robot crawler behaves like a cellular automaton. It will be convenient to refer to a node as dirty if
it has a non-positive weight (that is, it has not been yet visited by the robot crawler), and clean, otherwise.

The next observation that the process always terminates in a finite number of steps is less obvious.

Download English Version:

https://daneshyari.com/en/article/8941798

Download Persian Version:

https://daneshyari.com/article/8941798

Daneshyari.com

https://daneshyari.com/en/article/8941798
https://daneshyari.com/article/8941798
https://daneshyari.com

