ARTICLE IN PRESS

Discrete Applied Mathematics (())

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Cactus graphs with minimum edge revised Szeged index*

Mengmeng Liu^{a,*}, Shujing Wang^b

- ^a School of Mathematics, Lanzhou Jiaotong University, Gansu 730070, China
- ^b School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

ARTICLE INFO

Article history: Received 13 July 2017 Received in revised form 2 March 2018 Accepted 15 March 2018 Available online xxxx

Keywords: Wiener index Revised szeged index Edge revised szeged index Cactus graph

ABSTRACT

The edge revised Szeged index $Sz_e^*(G)$ is defined as $Sz_e^*(G) = \sum_{e=uv \in E} (m_u(e) + m_0(e)/2)$ $(m_v(e) + m_0(e)/2)$, where $m_u(e)$ and $m_v(e)$ are, respectively, the number of edges of G lying closer to vertex u than to vertex v and the number of edges of G lying closer to vertex v than to vertex v, and $m_0(e)$ is the number of edges equidistant to v and v. A cactus graph is a connected graph in which every block is an edge or a cycle. In this paper, we give a lower bound of the edge revised Szeged index among all v-edges cactus graphs with v-cycles, and also characterize those graphs that achieve the lower bound. We also obtain the second minimum edge revised Szeged index for connected cactus graphs of size v-with v-cycles. © 2018 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are finite, undirected and simple. We refer the readers to [2] for terminology and notations. Let C_n denote the cycle on n vertices. Let G be a connected graph with vertex set V and edge set E. Call u a pendant vertex of G, if $d_G(u) = 1$ and call uv a pendant edge of G, if $d_G(u) = 1$ or $d_G(v) = 1$. For $u, v \in V$, d(u, v) denotes the distance between u and v. The Wiener index of G is defined as

$$W(G) = \sum_{\{u,v\} \subseteq V} d(u, v).$$

This topological index has been extensively studied in the mathematical literature; see, e.g., [8,10]. Let e = uv be an edge of G, and define three sets as follows:

$$N_u(e) = \{ w \in V : d(u, w) < d(v, w) \},$$

$$N_v(e) = \{w \in V : d(v, w) < d(u, w)\},\$$

$$N_0(e) = \{w \in V : d(u, w) = d(v, w)\}.$$

Thus, $\{N_u(e), N_v(e), N_0(e)\}$ is a partition of the vertices of G with respect to e. The numbers of vertices of $N_u(e)$, $N_v(e)$ and $N_0(e)$ are denoted by $n_u(e)$, $n_v(e)$ and $n_0(e)$, respectively. Evidently, if n is the number of vertices of the graph G, then $n_u(e) + n_v(e) + n_0(e) = n$. A long time known property of the Wiener index is the formula [9,21]:

$$W(T) = \sum_{e=uv \in F} n_u(e) n_v(e),$$

E-mail addresses: liumm05@163.com (M. Liu), wang06021@126.com (S. Wang).

https://doi.org/10.1016/j.dam.2018.03.037

0166-218X/© 2018 Elsevier B.V. All rights reserved.

Supported by NSFC (No. 11501271), the Young Scholars Science Foundation of Lanzhou Jiaotong University (No. 2015027).

^{*} Corresponding author.

which is applicable for trees *T*. Using the above formula, Gutman [6] introduced a graph invariant named the *Szeged index* as an extension of the Wiener index and defined it by

$$Sz(G) = \sum_{e=uv \in F} n_u(e) n_v(e).$$

Randić [16] observed that the Szeged index does not take into account the contributions of the vertices at equal distances from the endpoints of an edge, and so he conceived a modified version of the Szeged index which is named the *revised Szeged index*. The revised Szeged index of a connected graph *G* is defined as

$$Sz^*(G) = \sum_{e=uv \in F} \left(n_u(e) + \frac{n_0(e)}{2} \right) \left(n_v(e) + \frac{n_0(e)}{2} \right).$$

Some properties and applications of these topological indices have been reported in [1,4,12,14,15,17,19,20,22]. Given an edge $e = uv \in E$, the distance between the edge e and the vertex x, denoted by d(e, x), is defined as

$$d(e, x) = \min\{d(u, x), d(v, x)\}.$$

Similarly, the sets $M_0(e)$, $M_u(e)$ and $M_v(e)$ are defined to be the set of edges equidistant from u and v, the set of edges whose distance to vertex v and the set of edges closer to v than u, respectively. The numbers of edges of $M_u(e)$, $M_v(e)$ and $M_0(e)$ are denoted by $m_u(e)$, $m_v(e)$ and $m_0(e)$, respectively. Evidently, if m is the number of edges of the graph G, then $m_u(e) + m_v(e) + m_0(e) = m$. The edge Szeged index [7], and the edge revised Szeged index [5] of G are defined as follows:

$$Sz_{e}(G) = \sum_{e=uv \in E} m_{u}(e)m_{v}(e),$$

$$Sz_{e}^{*}(G) = \sum_{e=uv \in E} \left(m_{u}(e) + \frac{m_{0}(e)}{2}\right) \left(m_{v}(e) + \frac{m_{0}(e)}{2}\right).$$

Results on edge Szeged index can be found in [3,11,18]. In [5], Dong et al. determined the *n*-vertex unicyclic graphs with the largest and the smallest revised edge Szeged indices. In [13], Liu and Chen gave an upper bound of the edge revised Szeged index for a connected bicyclic graphs, and also characterized those graphs that achieve the upper bound.

A cactus graph is a graph in which every block is an edge or a cycle. It is also a graph whose all cycles are edge-disjoint. A cycle in a cactus is called an end-block if all but one vertex of this cycle have degree 2. Let $\mathcal{C}(m, k)$ be the class of all cactus graphs of size m with k cycles. In this paper, we give a lower bound of the edge revised index in $\mathcal{C}(m, k)$, and characterize the extremal graphs that achieve the lower bound. We also obtain the second minimum edge revised Szeged index for connected cactus graphs of size m with k cycles.

2. Preliminaries

In this section, we give some preliminary results which will be used in the next sections to prove our theorems. We always denote the number of edges of G by m, i.e. m = |E(G)|. Using the fact that $m_u(e) + m_v(e) + m_0(e) = m$, we have

$$Sz_e^*(G) = \sum_{e=uv \in E} \left(m_u(e) + \frac{m_0(e)}{2} \right) \left(m_v(e) + \frac{m_0(e)}{2} \right)$$

$$= \sum_{e=uv \in E} \left(\frac{m + m_u(e) - m_v(e)}{2} \right) \left(\frac{m - m_u(e) + m_v(e)}{2} \right)$$

$$= \sum_{e=uv \in E} \frac{m^2 - (m_u(e) - m_v(e))^2}{4}$$

So we get that

$$SZ_e^*(G) = \frac{m^3}{4} - \frac{1}{4} \sum_{e=uv \in E} (m_u(e) - m_v(e))^2$$
 (1)

Lemma 2.1. Let G be a connected graph, and e = uv be a cut edge of G. Then $(m_u(e) - m_v(e))^2 \le (m-1)^2$ with equality if and only if e = uv is a pendant edge.

Proof. Let G_u and G_v be the components of G-uv that contain u and v, respectively. It is obvious that $M_u(e) = E(G_u)$, $M_v(e) = E(G_v)$ and $M_0(e) = \{e\}$. Using the fact that $m_u(e) + m_v(e) + m_0(e) = m$, we have

$$(m_u(e) - m_v(e))^2 = (|E(G_u)| - |E(G_v)|)^2 = (m - 1 - 2|E(G_v)|)^2 \le (m - 1)^2$$

with equality if and only if $|E(G_u)| = 0$ or $|E(G_v)| = 0$, that is, e is a pendant edge.

Download English Version:

https://daneshyari.com/en/article/8941804

Download Persian Version:

https://daneshyari.com/article/8941804

Daneshyari.com