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a b s t r a c t

In this paper, we investigate some structural properties of resonance graphs of plane
elementary bipartite graphs using Djoković – Winkler relation Θ and structural charac-
terizations of a median graph. Let G be a plane elementary bipartite graph. It is known that
its resonance graph Z(G) is a median graph. We first provide properties for Θ-classes of
the edge set of Z(G). As a corollary, Z(G) cannot be a nontrivial Cartesian product of median
graphs, which is equivalent to a result given by Zhang et al. that the distributive lattice on
the set of perfect matchings of G is irreducible. We then present a decomposition structure
on Z(G) with respect to a reducible face s of G. As an application, we give a necessary
and sufficient condition on when Z(G) can be obtained from Z(H) by a peripheral convex
expansion with respect to a reducible face s of G, where H is the subgraph of G obtained
by removing all internal vertices (if exist) and edges on the common periphery of s and
G. Furthermore, we show that Z(G) can be obtained from Z(H) by adding one pendent
edge with the face-label s if and only if s is a forcing face of G such that both s and the
infinite face of G areM-resonant for a degree-1 vertexM of Z(G). Our results generalize the
peripheral convex expansion structure on Z(G) given by Klavžar et al. for the case when G
is a catacondensed even ring system.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The concept of resonance graphs was first introduced in chemistry [5,6], and was reintroduced in many other papers
later, see [3,4,12,13]. A benzenoid graph (or, a hexagonal graph) is a 2-connected plane bipartite graph whose finite faces
are regular hexagons of unit size. A benzenoid graph is called catacondensed if all vertices are located on the periphery of
the graph. The concept of the resonance graph of a benzenoid graph was also given by Zhang et al. [18] under the name of
Z-transformation graph, and was extended to that of a plane bipartite graph in [23]. Let G be a plane bipartite graph with
a perfect matching. The Z-transformation graph (or, resonance graph) of G, denoted by Z(G), is the graph whose vertices
are the perfect matchings of G, and two vertices M1 and M2 of Z(G) are adjacent if and only if their symmetric difference is
the periphery of a finite face s of G, and we say that the edge M1M2 has the face-label s. It is well known [23] that if G is a
plane elementary bipartite graph, then Z(G) is a connected bipartite graph with at most two vertices of degree-1, and either
is a path or a graph of girth 4 different from cycles. In [10], it was shown that if G is a plane weakly elementary bipartite
graph, then the set M(G) of all perfect matchings of G is a finite distributive lattice and its Hasse diagram is isomorphic to
the resonance digraph of G. By the lattice structure on M(G), Zhang et al. proved [20] that if G is a plane weakly elementary
bipartite graph, then Z(G) is a median graph. An important structure characterization of a median graph is the Mulder’s
convex expansion theorem: A graph is a median graph if and only if it can be obtained from the one vertex graph by a
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convex expansion procedure [7]. A peripheral expansion structure for the resonance graph of a catacondensed benzenoid
graph was given in [8], and a peripheral convex expansion structure for the resonance graph of a catacondensed even ring
system was given in [9]. The Djoković – Winkler relation Θ plays an important role on the structural characterization of
median graphs. A characterization of the resonance graph of a catacondensed hexagonal graph was presented in [16] in
terms of the induced graph on theΘ-classes of the edge set of the resonance graph. Formore properties of resonance graphs,
readers are recommended the survey paper on Z-transformation graphs of plane bipartite graphs by Zhang [19].

In Section 2, we introduce basic terminologies and known results that will be used in the paper. Let G be a plane
elementary bipartite graph and Z(G) be its resonance graph. In Section 3, we show that all edges of Z(G) in a Θ-class have
the same face-label. We then use it to prove that Z(G) cannot be a nontrivial Cartesian product of median graphs, which
is equivalent to a result given by Zhang et al. [22] that the distributive lattice M(G) on the set of perfect matchings of G
is irreducible. A peripheral face s of G is called reducible if the subgraph H of G obtained by removing all internal vertices
(if exist) and edges on the common periphery of s and G is a plane elementary bipartite graph. In Section 4, we provide a
decomposition structure of Z(G) with respect to a reducible face s of G. As an application, we give a necessary and sufficient
condition on when Z(G) can be obtained from Z(H) by a peripheral convex expansion with respect to a reducible face s of G.
This generalizes the results given in [8,9]. Furthermore, we show that Z(G) can obtained from Z(H) by adding one pendent
edge with the face-label s if and only if s is a forcing face of G such that both s and the infinite face of G areM-resonant for a
degree-1 vertexM of Z(G).

2. Preliminaries

In this section, we introduce basic terminologies and known results that will be used in the paper. Let G be a graph. The
vertex set of G is denoted by V (G) and its edge set is denoted by E(G). An induced subgraph of G generated by a subset
W ⊆ V (G), denoted by ⟨W ⟩, is a graph with the vertex set W and two vertices are adjacent in ⟨W ⟩ if and only if they are
adjacent in G. We use uv to represent an edge of Gwith two end vertices u and v. The interval between two vertices u and v

of G is the set of all vertices on all shortest paths between u and v in G, and denoted by IG(u, v). A median of three vertices u,
v andw is a vertex that is contained in IG(u, v)∩ IG(u, w)∩ IG(v, w). A connected graph is called amedian graph if every triple
of its vertices has a unique median. An induced subgraph ⟨W ⟩ of G is called a convex subgraph if the interval IG(u, v) ⊆ W
for any u, v ∈ W . Let dG(u, v) denote the distance between two vertices u and v in G. If T is a subgraph of G such that
dT (u, v) = dG(u, v) for all u, v ∈ V (T ), then T is called an isometric subgraph of G.

A perfect matching (or, 1-factor) of a graph is a set of pairwise disjoint edges of the graph that cover all its vertices. A
perfect matching of a benzenoid graph coincides with the Kekulé structure of the corresponding benzenoid hydrocarbon.
Let M be a perfect matching of a graph G. An M-alternating cycle (resp., M-alternating path) of G is a cycle (resp., path)
of G whose edges are alternately in and off M . We call that a path P of G is weakly M-augmenting if it satisfies one of the
following conditions: (i) P has length 1 and the single edge of P is not contained in M , (ii) P is an M-alternating path such
that its two end edges are not contained in M . Note that a weakly M-augmenting path is different from an M-augmenting
path defined in [11], where the path has length > 1 and its two end vertices are not covered by the perfect matching M .
Let M1 and M2 be two perfect matchings of G. Then a cycle of G is called (M1,M2)-alternating if its edges are in M1 and M2
alternately. The symmetric difference A ⊕ B of two sets A and B is the set of elements belonging to A or B but not both, that
is, A⊕ B = (A∪ B) \ (A∩ B). It is well known that the symmetric differenceM1 ⊕M2 of two perfect matchingsM1 andM2 of
G is a union of disjoint (M1,M2)-alternating cycles of G.

A vertex of a plane graph is called an exterior vertex if it is located on the periphery (or, boundary) of the graph, and
an interior vertex otherwise. Each interior region of a plane graph G is called a finite face of G, and the exterior region of G
is called the infinite face (or, exterior face) of G. An even ring system is a 2-connected plane bipartite graph whose interior
vertices are degree-3 vertices and exterior vertices are degree-2 or degree-3 vertices. A catacondensed even ring system is an
even ring system such that all vertices are located on the periphery of the graph. A benzenoid graph (resp., a catacondensed
benzenoid graph) is an even ring system (resp., a catacondensed even ring system)whose finite faces are regular hexagons of
unit size. Two faces (one can be the infinite face) of a plane graph G are said to be adjacent if their peripheries have common
edges. A finite face s of G is called a peripheral face if it is adjacent to the infinite face of G. If a plane graph G is 2-connected,
then the periphery (or, boundary) of any face of G is a cycle. The periphery of the infinite face of G is denoted by ∂G, which
is referred as the periphery of G. We use ∂s to represent the periphery of a finite face s of G. A face (including the infinite
face) of G is calledM-resonant if its periphery is anM-alternating cycle for a perfect matchingM of G, and we say that a face
is resonant briefly if there is no need to mention M . A perfect matching M of G is called a peripheral perfect matching (or,
peripheral 1-factor) if the infinite face of G isM-resonant.

A bipartite graph G is called elementary if each edge is contained in some perfect matching of G. A plane bipartite graph
G is elementary if and only if each face (including the infinite face) of G is resonant [23]. In particular, a benzenoid graph
G is elementary if and only if the infinite face of G is resonant [17]. Elementary components of a bipartite graph G are the
components obtained by removing all edges that are not contained in any perfectmatchings of G. A plane bipartite graph G is
called weakly elementary if every finite face of every elementary component of G is still a face of G. For example, benzenoid
graphs are weakly elementary [23].

We assume that all vertices of a bipartite graph are colored white and black such that adjacent vertices cannot have the
same color. A bipartite graph G is elementary if and only if it has a bipartite ear decomposition G = e+P1+P2+· · ·+Pn [11]:
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