Note

Sharp bounds for the Randić index of graphs with given minimum and maximum degree

Suil O ${ }^{\text {a }}$, Yongtang Shi ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Applied Mathematics and Statistics, The State University of New York, Incheon, 21985, Republic of Korea
${ }^{\text {b }}$ Center for Combinatorics and LPMC, Nankai University, Tianjin, 300071, China

ARTICLE INFO

Article history:

Received 16 May 2017
Received in revised form 11 March 2018
Accepted 19 March 2018
Available online xxxx

Keywords:

Randic index
Maximum degree
Minimum degree

Abstract

The Randic index of a graph G, written $R(G)$, is the sum of $\frac{1}{\sqrt{d(u) d(v)}}$ over all edges $u v$ in $E(G)$. Let d and D be positive integers $d<D$. In this paper, we prove that if G is a graph with minimum degree d and maximum degree D, then $R(G) \geq \frac{\sqrt{d D}}{d+D} n$; equality holds only when G is an n-vertex (d, D)-biregular. Furthermore, we show that if G is an n-vertex connected graph with minimum degree d and maximum degree D, then $R(G) \leq$ $\frac{n}{2}-\sum_{i=d}^{D-1} \frac{1}{2}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}\right)^{2}$; it is sharp for infinitely many n, and we characterize when equality holds in the bound.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The Randić index of a graph G, written $R(G)$, is defined as follows:

$$
R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{d(u) d(v)}}
$$

where for a vertex $v \in V(G), d(v)$ is the degree of v. The concept was introduced by Milan Randić under the name "branching index" or "connectivity index" in 1975 [18], which has a good correlation with several physicochemical properties of alkanes. In 1998 Bollobás and Erdös [5,6] generalized this index by replacing $-\frac{1}{2}$ with any real number α, which is called the general Randić index. There are also many other variants of Randić index [10,12,19]. For more results on Randić index, see the survey papers [14,17].

Many important mathematical properties of Randić index have been established. Especially, the relations between Randić index and other graph parameters have been widely studied, such as the minimum degree [5], the chromatic index [15], the diameter [10,20], the radius [8], the average distance [8], the eigenvalues [4,2], and the matching number [2].

In 1988, Shearer proved if G has no isolated vertices then $R(G) \geq \sqrt{|V(G)|} / 2$ (see [11]). A few months later Alon improved this bound to $\sqrt{|V(G)|}-8$ (see [11]). In 1998, Bollobás and Erdös [5] proved that the Randić index of an n-vertex graph G without isolated vertices is at least $\sqrt{n-1}$, with equality if and only if G is a star. In [11], Fajtlowicz mentioned that Bollobás and Erdös asked the minimum value for the Randić index in a graph with given minimum degree. Then the question was answered in various ways [$1,9,13,16$].

For a graph G, we denote its complement by \bar{G}, which is a graph with the same vertex set of G such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G. We also denote by K_{n} the complete graph with n vertices

[^0]and by $K_{n}-e$ the graph obtained from the complete graph K_{n} by deleting an edge. A graph is (a, b)-biregular if it is bipartite with the vertices of one part all having degree a and the others all having degree b.

Aouchiche et al. [3] studied the relations between Randić index and the minimum degree, the maximum degree, and the average degree, respectively. They proved that for any connected graph G on n vertices with minimum degree d and maximum degree D, then $R(G) \geq \frac{d}{d+D} n$.

In this paper, we prove that if G is an n-vertex graph with minimum degree d and maximum degree D, then $R(G) \geq$ $\frac{\sqrt{d D}}{d+D} n$, which improves the result of Aouchiche et al. in [3]; equality holds only when G is an n-vertex (d, D)-biregular. Furthermore, we show that if G is an n-vertex connected graph with minimum degree d and maximum degree D, then $R(G) \leq \frac{n}{2}-\sum_{i=d}^{D-1} \frac{1}{2}\left(\frac{1}{\sqrt{i}}-\frac{1}{\sqrt{i+1}}\right)^{2}$; it is sharp for infinitely many n.

2. Main results

In this section, we first give a sharp lower bound for $R(G)$ in an n-vertex graph with given minimum and maximum degree, improving the one that Aouchiche et al. [3] proved.

Theorem 2.1. If G is an n-vertex graph with minimum degree d and maximum degree D, then $R(G) \geq \frac{\sqrt{d D}}{d+D} n$. Equality holds only when G is an n-vertex (d, D)-biregular.

Proof. For each $i \in\{d, \ldots, D\}$, let V_{i} be the set of vertices with degree i, and let $n_{i}=\left|V_{i}\right|$. Note that

$$
\begin{equation*}
\sum_{i=d}^{D} n_{i}=n \tag{1}
\end{equation*}
$$

Let $m_{i j}=\left|\left[V_{i}, V_{j}\right]\right|$ for all $i, j \in\{d, \ldots, D\}$, where $[A, B]$ is the set of edges with one end-vertex in A and the other in B. Since G has minimum degree d and maximum degree D, we have

$$
\begin{equation*}
R(G)=\sum_{d \leq i \leq j \leq D} \frac{m_{i j}}{\sqrt{i j}} \tag{2}
\end{equation*}
$$

For fixed i, the degree sum over all vertices in V_{i} can be computed by counting the edges between V_{i} and V_{j} over all $j \in\{d, \ldots, D\}$;

$$
\begin{equation*}
i n_{i}=m_{i i}+\sum_{j=d}^{D} m_{i j} \tag{3}
\end{equation*}
$$

Note that $m_{i i}$ must be counted twice.
By manipulating equation (3), we have the followings:

$$
\begin{align*}
& d n_{d}=\left(m_{d d}+\sum_{j=1}^{D} m_{d j}\right) \Rightarrow n_{d}-\frac{m_{d D}}{d}=\frac{1}{d}\left(m_{d d}+\sum_{j=d}^{D-1} m_{d j}\right) \tag{4}\\
& D n_{D}=\left(m_{D D}+\sum_{j=1}^{D} m_{D j}\right) \Rightarrow n_{D}-\frac{m_{d D}}{D}=\frac{1}{D}\left(m_{D D}+\sum_{j=d+1}^{D} m_{j D}\right) \tag{5}\\
& n_{i}=\frac{1}{i}\left(m_{i i}+\sum_{j=d}^{D} m_{i j}\right) \tag{6}
\end{align*}
$$

By Eqs. (1) and (6), we have

$$
\begin{equation*}
n_{d}+n_{D}=n-\sum_{i=d+1}^{D-1} n_{i}=n-\sum_{i=d+1}^{D-1} \frac{1}{i}\left(m_{i i}+\sum_{j=d}^{D} m_{i j}\right) \tag{7}
\end{equation*}
$$

By combining Eqs. (4), (5), and (7), we have

$$
\begin{aligned}
& n_{d}-\frac{m_{d D}}{d}+n_{D}-\frac{m_{d D}}{D}=n-\sum_{i=d+1}^{D-1} \frac{1}{i}\left(m_{i i}+\sum_{j=d}^{D} m_{i j}\right)-\left(\frac{d+D}{d D}\right) m_{d D} \\
& =\frac{1}{d}\left(m_{d d}+\sum_{j=d}^{D-1} m_{d j}\right)+\frac{1}{D}\left(m_{D D}+\sum_{j=d+1}^{D} m_{j D}\right) \Rightarrow
\end{aligned}
$$

https://daneshyari.com/en/article/8941807

Download Persian Version:

https://daneshyari.com/article/8941807

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: suil.o@sunykorea.ac.kr (S. O), shi@nankai.edu.cn (Y. Shi).

