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a b s t r a c t

We treat the following problem: given an n × n square ABCD, determine the minimum
number of points that need to be chosen inside the square ABCD such that there does
not exist a unit square inside the square ABCD containing none of the chosen points in
its interior. In other words, we are interested to know how to most efficiently ‘‘destroy’’ a
square-shaped object of side length n, where ‘‘destroying’’ is achieved by piercing as few
as possible small holes, and the square is considered ‘‘destroyed’’ if no unpierced square
piece of unit side length can be salvaged. This problem actually belongs to the family of
problems centered about the so-called piercing number: indeed, ifUn denotes the collection
of all open unit squares that can be fitted inside a given n × n square, the value that we
are looking for is the piercing number of the collection Un, denoted by π (Un). We show
that π (Un) = n2 when n ⩽ 7, and give an upper bound for π (Un) that is asymptotically
equal to 2

√
3
n2, which we believe is asymptotically tight. We then generalize our reasoning

in order to obtain a similar upper bound when ABCD is a rectangle, as well as an upper
bound forπ (Ux) when x is not necessarily an integer. Finally, we show that our results have
an application to the problem of packing a given number of unit squares in the smallest
possible square; it turns out that our results present a general ‘‘framework’’ based on
which we are able to reprove many results on the mentioned problem (originally obtained
independently of each other) and also obtain a new result on packing 61 unit squares.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

There are several lines of research concerning arrangements of unit squares with respect to a larger square, such as
packing n unit squares in the smallest possible square [11], or covering the largest possible square with n unit squares [12].
There are also several lines of research concerning arrangements of points inside a given square, such as the problem initiated
by Moser [18] to find how large the minimum distance determined by n points in a unit square can be (which is today often
researched in its equivalent form of packing circles in a square [3, Section D1] [23]) or the problem of determining the area
of the largest convex region not containing in its interior any of n points chosen in a unit square [19,21].

We hereby study a problem that presents a kind of interplay between these two classes of problems. In fact, it belongs
to a (quite general) family of problems centered about the so-called piercing number. Namely, given a collection of figures F

in the Euclidean plane (or, more generally, space), the piercing number of F , denoted by π (F ), is defined as the minimum
number of points that need to be chosen in such a way that each figure from F contains at least one of the chosen points
(in other words, how many ‘‘needles’’ are required to pierce all members of F ). One of the first questions of this kind was
asked by Gallai [10, Section III.13]: determine the smallest integer k such that, given any family of circular disks in the plane
where every two of themhave a common point, there exists a set of k points such that each disk contains at least one of those
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points; in other words, the value that is asked for equals supFπ (F ), where F ranges over all the described families of disks.
(It is now known that the answer is k = 4, where the lower bound is due to Grünbaum [14], while a proof of the upper bound
had been announced by Danzer in 1954, though the first published proof is due to Stachó [22]; Danzer himself published [5]
a proof in 1986, though this is not his original proof.) Various other problems of this kind have been investigated: when
the space is d-dimensional, when all the disks are congruent, when the family consists of translates/homothetic images of a
given (usually convex) figure etc. (We mention, for example, the result of Karasev [16], who proved that 3 points are always
sufficient, and sometimes necessary, to pierce any family of translates of a compact convex set in the plane, any two of which
have nonempty intersection.) These problems are usually called Gallai-type problems. A further family of problems that has
attracted quite a lot of attention is the family of the so-called (p, q)-problems. They ask for piercing numbers of finite families
of sets in the d-dimensional space, such that among every p members of the family there exist q of them with a nonempty
intersection. One of the most important results for this class of problems is proved by Alon and Kleitman [1], who showed
that, whenever p, q and d are fixed and p ⩾ q ⩾ d + 1, then π (F ) has an upper bound depending only on (p, q, d). However,
exact values of supFπ (F ) (for fixed p, q, d) are known only in some very special cases. Apart from d = 1, when it is known
that p + q − 1 are always sufficient and sometimes necessary to pierce F (proved by Hadwiger and Debrunner [15], in the
paper where this family of problems has actually been introduced), even for (p, q, d) = (4, 3, 2) it is only known that the
supremum is bounded below by 3 (see [4]) and above by 13 (see [17]). For more information about problems related to the
piercing number, see the surveys [6–8].

We treat the following problem: given an n × n square ABCD, determine the minimum number of points that need to be
chosen inside the square ABCD such that there does not exist a unit square inside the square ABCD containing none of the
chosen points in its interior. In other words, if Un denotes the collection of all open unit squares that can be fitted inside
a given n × n square, we are looking for the value π (Un). The problem can also be presented in the following way: we are
interested to know how tomost efficiently ‘‘destroy’’ a square-shaped object of side length n, where ‘‘destroying’’ is achieved
by piercing as few as possible small holes, and the square is considered ‘‘destroyed’’ if no unpierced square piece of unit side
length can be salvaged. Stated like this, it seems that this problem is quite applicable in real life. Furthermore, as it will turn
out, it also has a direct application to the already mentioned research problem of packing n unit squares in the smallest
possible square.

The work is divided into sections as follows. In Section 2 we show that for n ∈ N, n ⩽ 4, we have π (Un) = n2 (note that n2

is a trivial lower bound for π (Un), and thus we only need to prove that π (Un) ⩽ n2). In Section 3 we prove an upper bound
for π (Un) asymptotically equal to 2

√
3
n2. Our upper bound actually matches the lower bound n2 for n ⩽ 7, and thus we get

a corollary that for n ⩽ 7 we have π (Un) = n2. (This in fact includes the results from Section 2 as a special case. However,
in Section 3 we actually use some parts of the proof from Section 2, while the construction given in Section 2 is much more
natural and thus we believe that the underlying idea is simpler to understand if seen on that construction first.) In Section 4
we show how the upper bound from Section 3 can be easily generalized to the case when ABCD is a rectangle; we then
modify the upper bound from Section 3 in order to obtain an upper bound for π (Ux) when x is not necessarily an integer.
In Section 5 we show that our results enable us to reproduce, as a direct consequence, some known results on the square
packing problem (among which is a result that the smallest square in which 46 unit squares can be packed is the square of
side length 7, which has been proved only recently [2]), and further obtain a new result on packing 61 unit squares. Finally,
in Section 6 we state a conjecture about asymptotical tightness of our upper bound for π (Un).

Our techniques remind of some ideas often used in the context of ‘‘unavoidable points’’, a notion developed by
Friedman [11] in relation to the square packing problem; in fact, some of our proofs can be a little bit shortened by appealing
to some lemmas from there. We instead choose to write the paper in a completely self-contained way.

2. The case n ⩽ 4

The construction that proves the case n ⩽ 4 is actually quite natural, although the proof becomes somewhat technical at
some points.

Theorem 1. For n ⩽ 4, π (Un) = n2.

Proof. Since the n × n square can be divided into n2 interior-disjoint unit squares, it is clear that π (Un) ⩾ n2. Let us show
that n2 points suffice. We first show this for n = 4.

Let the vertices A, B, C , D of the square ABCD have the coordinates (0, 0), (4, 0), (4, 4) and (0, 4), respectively. We choose
16 points at the following coordinates:(

1 − ε + i
2 + 2ε

3
, 1 − ε + j

2 + 2ε
3

)
, 0 ⩽ i, j ⩽ 3,

where ε is going to be chosen later. That way, the chosen 16 points represent a square lattice with the step 2+2ε
3 . Let PQRS

be the square that bounds this lattice (Fig. 1).
We need to show that each unit square inside the square ABCD contains at least one of the chosen points in its interior

(for a suitable ε). Let us first consider a unit square whose center is inside the square PQRS. Notice that, for each point inside
the square PQRS, there exists at least one of the chosen 16 points at a distance from the observed point of no more than
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