Note

On some open problems concerning quorum colorings of graphs

Rafik Sahbi ${ }^{\text {a,b }}$, Mustapha Chellali ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, Preparatory School Sciences and Techniques, Algiers, Algeria
${ }^{\mathrm{b}}$ LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria

ARTICLE INFO

Article history:

Received 6 May 2017
Received in revised form 9 March 2018
Accepted 22 March 2018
Available online xxxx

Keywords:

Quorum colorings
Defensive alliances
Complexity

Abstract

A partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the vertex set V of a graph G into k color classes V_{i}, with $i \in\{1, \ldots, k\}$, is called a quorum coloring if, for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$ of v have the same color as v. The maximum order of a quorum coloring of G is called the quorum coloring number of G and is denoted $\psi_{q}(G)$. In this paper, we give answers to three open problems stated in 2013 by Hedetniemi, Hedetniemi, Laskar and Mulder. In particular, we show that the decision problem associated with $\psi_{q}(G)$ is NP-complete, and we prove that for any graph G on n vertices, $\psi_{q}(G)+\psi_{q}(\bar{G}) \leq n+2$, where \bar{G} is the complement of G.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph of order $n=|V|$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G): u v \in E(G)\}$ and the closed neighborhood of v is the set $N[v]=N(v) \cup\{v\}$. The degree of a vertex v in G is $d_{G}(v)=|N(v)|$. A vertex of G with degree one is a leaf of G. The maximum and minimum vertex degrees in G are denoted by $\Delta(G)$ and $\delta(G)$, respectively.

A partition $\pi=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ of the vertex set V of a graph G into k color classes V_{i}, with $i \in\{1, \ldots, k\}$, is called a quorum coloring if, for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$ have the same color as v. The maximum order of a quorum coloring of G is called the quorum coloring number of G and is denoted $\psi_{q}(G)$. A quorum coloring of order $\psi_{q}(G)$ is called a ψ_{q}-coloring. Quorum colorings were introduced by Hedetniemi, Hedetniemi, Laskar and Mulder [6]. The concept of quorum coloring is closely related to the concept of defensive alliances in graphs introduced by Kristiansen, Hedetniemi and Hedetniemi [5]. Indeed, a defensive alliance in G is a subset S of V such that, for every vertex $v \in S$, we have $|N[v] \cap S| \geq|N(v) \cap(V \backslash S)|$. Hence every color class of a ψ_{q}-coloring is a defensive alliance. Note that Haynes and Lachniet in [4] were the first to introduce the problem of partitioning the vertex set V into defensive alliances. This problem was also studied earlier by Eroh and Gera [1]. However, we will adopt in this paper the definitions and notations given in [6].

The corona $G \circ K_{1}$ of a graph G is the graph made from G by appending a vertex of degree one to each vertex of G. Let \bar{G} denote the complement of the graph G.

[^0]In [6], Hedetniemi et al. raised the following problems.

1. What is the complexity of the following decision problem:

QUORUM-K

Instance: Graph $G=(V, E)$, positive integer $K \leq|V|$.
Question: Does G have a quorum coloring of order at least K ?
2. What are good Gaddum-Nordhaus bounds for $\psi_{q}(G)+\psi_{q}(\bar{G})$ and $\psi_{q}(G) \times \psi_{q}(\bar{G})$?

Moreover, the authors [6] posed the following conjecture.
Conjecture 1. If G is a graph of order $n \geq 4$, then $4 \leq \psi_{q}(G)+\psi_{q}(\bar{G}) \leq n+2$.
3. It is easy to see that for any graph $G, \psi_{q}(G) \leq \psi_{q}\left(G \circ K_{1}\right)$. But is a more refined result possible? For example, when is this inequality strict?

In this paper, we first show that problem QUORUM-K is NP-complete. Then we prove the right inequality of Conjecture 1 and we answer Question 3.

2. Preliminary results

We begin by recalling some important results that will be useful in our investigations. Obviously, $1 \leq \psi_{q}(G) \leq n$ for every graph G of order n. A characterization of the graphs G of order n with $\psi_{q}(G)=n$ is given in [6] as follows.

Theorem 2 (Hedetniemi et al. [6]). If G is a graph of order n, then $\psi_{a}(G)=n$ if and only if $\Delta(G) \leq 1$.
In contrast to the upper bound, the characterization of graphs G with $\psi_{q}(G)=1$ remains open. The following result shows that such graphs have minimum degree at least two.

Proposition 3 (Hedetniemi et al. [6]). If G is a graph with order $n \geq 2$ and minimum degree $\delta \in\{0,1\}$, then $\psi_{q}(G) \geq 2$.
Restricted to graphs G with minimum degree at least two, the authors [6] improved the upper bound on the quorum coloring number.

Proposition 4 (Hedetniemi et al. [6]). If G is a graph with order n and minimum degree $\delta \geq 2$, then $\psi_{q}(G) \leq\lfloor n / 2\rfloor$.
The next two results are due to Eroh and Gera.
Proposition 5 (Eroh and Gera [1]). For each pair k and n of positive integers with $k \leq n$, there exists a graph G of order n and $\psi_{q}(G)=k$, except for $k=1$ and $n \in\{2,4\}$.

Theorem 6 (Eroh and Gera. [1]). Let G be a graph with minimum degree δ. Then $\psi_{q}(G) \leq\left\lfloor\frac{n}{\left\lceil\frac{\delta+1}{2}\right\rceil}\right\rfloor$.
We close this section by giving an upper bound for the quorum coloring number of any graph G in terms of the order, and the maximum and minimum degrees.

Proposition 7. For any graph $G, \psi_{q}(G) \leq 1+\left\lfloor\frac{n-\left\lceil\frac{\Delta(G)+1}{2}\right\rceil}{\left\lceil\frac{\delta(G)+1}{2}\right\rceil}\right\rfloor$.
Proof. Let π be a ψ_{q}-coloring of G and v a vertex of maximum degree. Assume that v belongs to a color class A of π. Clearly $|A| \geq\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$ and so $|V \backslash A| \leq n-\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$. Since every color class of π contains at least $\left\lceil\frac{\delta(G)+1}{2}\right\rceil$ vertices, we obtain that the vertices of $V \backslash A$ are contained in at most $\left\lfloor\frac{|V \backslash A|}{\left.\Gamma \frac{\delta(G)+1}{2}\right\rceil}\right\rfloor$ distinct color classes. Therefore $\psi_{q}(G) \leq 1+\left\lfloor\frac{|V \backslash A|}{\left.\Gamma \frac{\delta(G)+1}{2}\right\rceil}\right\rfloor \leq$ $1+\left\lfloor\frac{n-\left\lceil\frac{\Delta(G)+1}{2}\right\rceil}{\left\lceil\frac{\delta(G)+1}{2}\right\rceil}\right\rfloor$.

As an immediate consequence to Proposition 7, we have the following.
Corollary 8. For any graph $G, \psi_{q}(G) \leq 1+n-\left\lceil\frac{\Delta(G)+1}{2}\right\rceil$.

https://daneshyari.com/en/article/8941824

Download Persian Version:

https://daneshyari.com/article/8941824

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: rafik.sahbi@gmail.com (R. Sahbi), m_chellali@yahoo.com (M. Chellali).

