ARTICLE IN PRESS

Discrete Applied Mathematics [(]]] .

Note

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On some open problems concerning quorum colorings of graphs

Rafik Sahbi^{a,b}, Mustapha Chellali^{b,*}

^a Department of Mathematics and Computer Science, Preparatory School Sciences and Techniques, Algiers, Algeria
^b LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria

ARTICLE INFO

Article history: Received 6 May 2017 Received in revised form 9 March 2018 Accepted 22 March 2018 Available online xxxx

Keywords: Quorum colorings Defensive alliances Complexity

ABSTRACT

A partition $\pi = \{V_1, V_2, \ldots, V_k\}$ of the vertex set V of a graph G into k color classes V_i , with $i \in \{1, \ldots, k\}$, is called a quorum coloring if, for every vertex $v \in V$, at least half of the vertices in the closed neighborhood N[v] of v have the same color as v. The maximum order of a quorum coloring of G is called the quorum coloring number of G and is denoted $\psi_q(G)$. In this paper, we give answers to three open problems stated in 2013 by Hedetniemi, Hedetniemi, Laskar and Mulder. In particular, we show that the decision problem associated with $\psi_q(G)$ is NP-complete, and we prove that for any graph G on n vertices, $\psi_q(G) + \psi_q(\overline{G}) \le n + 2$, where \overline{G} is the complement of G.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let G = (V, E) be a simple graph of order n = |V|. For every vertex $v \in V$, the open neighborhood N(v) is the set $\{u \in V(G) : uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex v in G is $d_G(v) = |N(v)|$. A vertex of G with degree one is a leaf of G. The maximum and minimum vertex degrees in G are denoted by $\Delta(G)$ and $\delta(G)$, respectively.

A partition $\pi = \{V_1, V_2, \dots, V_k\}$ of the vertex set V of a graph G into k color classes V_i , with $i \in \{1, \dots, k\}$, is called a *quorum coloring* if, for every vertex $v \in V$, at least half of the vertices in the closed neighborhood N[v] have the same color as v. The maximum order of a quorum coloring of G is called the *quorum coloring number* of G and is denoted $\psi_q(G)$. A quorum coloring of order $\psi_q(G)$ is called a ψ_q -coloring. Quorum colorings were introduced by Hedetniemi, Hedetniemi, Laskar and Mulder [6]. The concept of quorum coloring is closely related to the concept of defensive alliances in graphs introduced by Kristiansen, Hedetniemi and Hedetniemi [5]. Indeed, a *defensive alliance* in G is a subset S of V such that, for every vertex $v \in S$, we have $|N[v] \cap S| \ge |N(v) \cap (V \setminus S)|$. Hence every color class of a ψ_q -coloring is a defensive alliance. Note that Haynes and Lachniet in [4] were the first to introduce the problem of partitioning the vertex set V into defensive alliances. This problem was also studied earlier by Eroh and Gera [1]. However, we will adopt in this paper the definitions and notations given in [6].

The corona $G \circ K_1$ of a graph G is the graph made from G by appending a vertex of degree one to each vertex of G. Let G denote the complement of the graph G.

* Corresponding author.

https://doi.org/10.1016/j.dam.2018.03.060 0166-218X/© 2018 Elsevier B.V. All rights reserved.

E-mail addresses: rafik.sahbi@gmail.com (R. Sahbi), m_chellali@yahoo.com (M. Chellali).

2

ARTICLE IN PRESS

R. Sahbi, M. Chellali / Discrete Applied Mathematics 🛛 (🗤 🗤) 🗤 – 🗤

In [6], Hedetniemi et al. raised the following problems.

- 1. What is the complexity of the following decision problem: **QUORUM-K Instance**: Graph G = (V, E), positive integer $K \le |V|$. **Question**: Does *G* have a quorum coloring of order at least *K*?
- 2. What are good Gaddum–Nordhaus bounds for $\psi_q(G) + \psi_q(\overline{G})$ and $\psi_q(G) \times \psi_q(\overline{G})$?

Moreover, the authors [6] posed the following conjecture.

Conjecture 1. If G is a graph of order $n \ge 4$, then $4 \le \psi_q(G) + \psi_q(\overline{G}) \le n + 2$.

3. It is easy to see that for any graph G, $\psi_q(G) \le \psi_q(G \circ K_1)$. But is a more refined result possible? For example, when is this inequality strict?

In this paper, we first show that problem QUORUM-K is NP-complete. Then we prove the right inequality of Conjecture 1 and we answer Question 3.

2. Preliminary results

We begin by recalling some important results that will be useful in our investigations. Obviously, $1 \le \psi_q(G) \le n$ for every graph *G* of order *n*. A characterization of the graphs *G* of order *n* with $\psi_q(G) = n$ is given in [6] as follows.

Theorem 2 (Hedetniemi et al. [6]). If G is a graph of order n, then $\psi_a(G) = n$ if and only if $\Delta(G) \leq 1$.

In contrast to the upper bound, the characterization of graphs *G* with $\psi_q(G) = 1$ remains open. The following result shows that such graphs have minimum degree at least two.

Proposition 3 (Hedetniemi et al. [6]). If G is a graph with order $n \ge 2$ and minimum degree $\delta \in \{0, 1\}$, then $\psi_q(G) \ge 2$.

Restricted to graphs *G* with minimum degree at least two, the authors [6] improved the upper bound on the quorum coloring number.

Proposition 4 (Hedetniemi et al. [6]). If G is a graph with order n and minimum degree $\delta \ge 2$, then $\psi_a(G) \le \lfloor n/2 \rfloor$.

The next two results are due to Eroh and Gera.

Proposition 5 (Eroh and Gera [1]). For each pair k and n of positive integers with $k \le n$, there exists a graph G of order n and $\psi_q(G) = k$, except for k = 1 and $n \in \{2, 4\}$.

Theorem 6 (Eroh and Gera. [1]). Let G be a graph with minimum degree δ . Then $\psi_q(G) \leq \left\lfloor \frac{n}{\lceil \frac{\delta+1}{2} \rceil} \right\rfloor$.

We close this section by giving an upper bound for the quorum coloring number of any graph G in terms of the order, and the maximum and minimum degrees.

Proposition 7. For any graph G, $\psi_q(G) \leq 1 + \left\lfloor \frac{n - \lceil \frac{\Delta(G)+1}{2} \rceil}{\lceil \frac{\delta(G)+1}{2} \rceil} \right\rfloor$.

Proof. Let π be a ψ_q -coloring of G and v a vertex of maximum degree. Assume that v belongs to a color class A of π . Clearly $|A| \ge \left\lceil \frac{\Delta(G)+1}{2} \right\rceil$ and so $|V \setminus A| \le n - \left\lceil \frac{\Delta(G)+1}{2} \right\rceil$. Since every color class of π contains at least $\left\lceil \frac{\delta(G)+1}{2} \right\rceil$ vertices, we obtain that the vertices of $V \setminus A$ are contained in at most $\left\lfloor \frac{|V \setminus A|}{\lceil \frac{\delta(G)+1}{2} \rceil} \right\rfloor$ distinct color classes. Therefore $\psi_q(G) \le 1 + \left\lfloor \frac{|V \setminus A|}{\lceil \frac{\delta(G)+1}{2} \rceil} \right\rfloor \le 1$

$$1 + \left\lfloor \frac{n - \lceil \frac{\Delta(G) + 1}{2} \rceil}{\lceil \frac{\delta(G) + 1}{2} \rceil} \right\rfloor. \quad \Box$$

As an immediate consequence to Proposition 7, we have the following.

Corollary 8. For any graph G, $\psi_q(G) \leq 1 + n - \left\lceil \frac{\Delta(G)+1}{2} \right\rceil$.

Please cite this article in press as: R. Sahbi, M. Chellali, On some open problems concerning quorum colorings of graphs, Discrete Applied Mathematics (2018), https://doi.org/10.1016/j.dam.2018.03.060.

Download English Version:

https://daneshyari.com/en/article/8941824

Download Persian Version:

https://daneshyari.com/article/8941824

Daneshyari.com