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a b s t r a c t

The shock-bubble interaction in a compressible multiphase flow was investigated using a diffuse inter-
face method (DIM) consisting of seven equations. To achieve detailed flow structures and mass transfer
information, high-order numerical schemes, including the fifth-order MLP and a modified HLLC Riemann
solver, were implemented. The numerical methods were verified via a flow structure comparison of the
high-pressure water and low-pressure air shock tubes. A two-dimensional air-helium shock-bubble
interaction at the incident shock wave condition (Mach number 1.22) was numerically solved and
verified using the experimental results. A very detailed deformation was observed, so unsteady shock
patterns such as the incident, transmitted, and reflected shocks could be identified. In addition, the
air–water shock-bubble interaction at the same Mach number condition (1.22) was analyzed via the
observation of detailed flow structures such as the reflection and transmitted shock inside and outside
of the water bubble.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A cavitation is a rapid evolution of vapor bubbles in a fluid due
to very low pressures. The sudden appearance of bubbles and sub-
sequent collapse causes a sudden change in pressure, which can
lead to severe mechanical damage. Damage is known to occur
through two mechanisms [1]. First, the strong shockwaves gener-
ated by the bubble collapse can interact with the surface. The sec-
ond mechanism occurs when the bubble is very closely attached to
the wall. This leads the jet to impact the wall directly, causing ero-
sion. This phenomenon is called a ‘water hammer’ [2] and is under-
stood to be the more potent mechanism.

High-speed vehicles can suffer damage via collisions with sev-
eral millimeters of liquid droplets present in the atmosphere,
called hydrometers [3]. In this case, the water droplets collide with
the surface after undergoing deformations such as shape changes
and mass reductions due to the shock waves generated in front
of the body. The state of the water droplets deformed by the shock
waves is a factor to be considered because the damage can be seri-
ous when the surface changes according to the deformation

strength of the water droplet [3,4]. The deformation of water dro-
plets due to shock waves occurs under the interaction of complex
phenomena such as incident, transmitted, and reflected shocks. A
precise numerical technique to account for compressible multi-
phase flows is required to analyze these phenomena numerically.

There are two schemes for mathematically capturing the inter-
face of a multiphase flow – the sharp interface method (SIM) and
diffuse interface method (DIM). The SIM includes the typical vol-
ume of fluid (VOF) [5] and level-set [6] methods, and these meth-
ods are based on incompressible governing equations. Moreover,
the SIM has complex algorithms and is expensive. On the other
hand, the DIM is based on the Baer-Nunziato equation [7], which
is a compressible flow equation. This makes the DIM simpler than
the SIM. Therefore, in this study, the DIM was implemented to
solve compressible multiphase flows such as shock-bubble interac-
tion problems.

There have been several numerical studies on shock-bubble
interactions. Quirk and Karni [8] conducted a numerical analysis
of an air-helium bubble. Terashima and Tryggvason [9] performed
a numerical analysis of air-helium and air-water bubble shocks
using five equations with front-tracking and ghost fluid methods.
Yeom and Chang [10] modified the HLLC method to simulate
bubble-shock wave interactions with six equations and compared
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the results with previous studies to confirm that their results had
fewer numerical errors. Daramizadeh and Ansari [11] used the
MUSCL and HLLC methods to calculate a shock-bubble. Sembian
et al. [12] conducted experiments on the interaction of shocks with
cylinder water columns in the air, and they compared the results
with numerical results. Wang et al. [13] conducted a shock-
bubble numerical analysis using the MUSCL-Hancock scheme and
the second-order upwind scheme for helium bubbles of various
shapes. Recently, Haimovich and Frankel [14] performed bubble
arithmetic using the TENO reconstruction method and compared
the results of the WENO and MUSCL. Yoo & Sung [15] conducted
a numerical analysis of a two-dimensional air-helium shock-
bubble interaction at the incident shock wave condition (Mach
number 1.22) using the diffuse interface method and modified
HLLC and then compared it with experimental results.

This study, however, used the Baer-Nunziato’s seven equations
and fifth-order multi-dimensional limiting process (MLP) recon-
struction scheme, and the modified Harten–Lax–van Leer-Contact
(HLLC) Riemann scheme to achieve more detailed characteristics
of the bubble-shock interaction.

2. Governing equations

2.1. The governing equation

The two-dimensional seven-equation model proposed by Baer
and Nunziato [7] is as follows.
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where k ¼ 1;2 corresponds to the gas and liquid phases, respec-
tively. The vectors are defined as:
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Hk and Ik are non-conservative matrices, and H2 ¼ �H1, I2 ¼ �I1.
The two volume fractions satisfy a1 þ a2 ¼ 1. Saurel and Abgrall
[16] determined that the interfacial velocity could be estimated as
it corresponded to the center of mass velocity and pressure, which
equals the mixture pressure, as follows.

uI ¼ a1q1u1 þ a2q2u2

a1q1 þ a2q2
; v I ¼ a1q1v1 þ a2q2v2

a1q1 þ a2q2
ð3Þ

pI ¼ a1p1 þ a2p2 ð4Þ
To solve Eq. (1), eight primitive variables are used, as follows.

Qk ¼ ðq;u; v;pÞk ð5Þ
where k = 1 and 2. The velocity and pressure relaxation process
described in Eqs. (3) and (4) yields the same speed and pressure
for each phase. The governing system solves the seven equations
of Eq. (1), but consequently has five primitive variables,
Q ¼ ðq1;q2;u; v;pÞ.

2.2. Equations of state

Each phase governed by the stiffened equations of state (EOS) is
well-matched for the liquid phase in a large pressure differential
environment.

pk ¼ ðck � 1Þqkek � ckpk;1 ð6Þ
where ck and pk;1 are empirically determined as the constant
parameters of each phase. Eq. (6) becomes equal to the EOS for
the gas phase if pk;1 is zero. Then, the specific total energy becomes

E ¼ pþcpk;1
qðc�1Þ þ 1

2 ðu2 þ v2Þ. The velocity of sound in a stiffened EOS is as

follows.
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s
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Nomenclature

c speed of sound
E specific total energy
e internal energy
F inviscid flux vectors of x directions
G inviscid flux vectors of y directions
H non-conservative of x direction
I non-conservative of y direction
n normal vectors
pI interfacial pressure
p pressure
Q primitive variables
r coefficient of MLP
S cell face area
s fastest wave speed
U conservative matrix
u x velocity
uI interfacial x velocity
V contravariant velocities
v y velocity
v I interfacial y velocity
p1 infinite pressure parameter of EOS

Greek
a volume fraction
q density
u coefficient of MLP
c specific heat ratio
X cell volume
k artificial drag coefficient

Superscripts
– averaged value
⁄ state at the intermediate or step in RK

Subscripts
i notation of x-direction
j notation of y-direction
k phase
L left state
R right state
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