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a b s t r a c t

Composite materials have a wide range of engineering applications, and their effective thermal conduc-
tivities are important thermo-physical properties for real applications. The traditional methods to study
effective thermal conductivities of composite materials, such as the effective medium theory, the direct
solution of heat diffusion equation, or the Boltzmann transport equation, are all based on developing
good physical understanding of heat transfer mechanisms in those composite materials. In this work,
we take a completely different approach to predict the effective thermal conductivities of composite
materials using machine learning methods. With a set of trustable data, the support vector regression
(SVR), Gaussian process regression (GPR) and convolution neural network (CNN) are employed to train
models that can predict the effective thermal conductivities of composite materials. We find that the
models obtained from SVR, GPR, and CNN all have a better performance than the Maxwell-Eucken model
and the Bruggeman model in terms of predicting accuracy. Our work demonstrates that machine learning
methods are useful tools to fast predict the effective thermal conductivities of composite materials and
porous media if the training data set is available. The machine learning approach also has the potential to
be generalized and applied to study other physical properties of composite materials.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Composite materials and porous media have wide engineering
applications, e.g., automobile industries and aeronautical applica-
tions like components of rockets, aircrafts, etc. [1,2]. The effective
thermal conductivity is one of the most significant thermo-
physical characteristics of the composite material. To predict the
effective thermal conductivities of composite materials, the fac-
tors, including the thermal conductivity, size, and distribution of
the inclusion, that may affect the effective thermal conductivities
should be considered [3].

There are numerous existing methods, such as effective med-
ium theory (EMT) [4–6], the direct solution of heat diffusion equa-
tion [7], and the solution of Boltzmann transport equation (BTE) [8]
to predict the effective thermal conductivities of composite mate-
rials and porous media. The EMT [9] provides simple analytical
models that can quickly estimate the effective thermal conductiv-
ities of the composite materials [10], knowing the properties and
volume fractions of the inclusions. For example, Maxwell [11]
was the first person to give analytical expressions for effective

thermal conductivities of composite materials. The Maxwell model
considers dilute dispersion of spherical particles embedded in a
continuous matrix, where thermal interactions between inclusions
are ignored. To consider the thermal interactions, the Bruggeman
model [12] has been developed and it is considered to be more
accurate for high filler volume fractions. EMT is simple but the
accuracy is limited because it does not consider the effect of the
distribution of inclusions. To consider the details of materials dis-
tribution in a composite, direct solutions of heat diffusion equation
are generally adopted. Many numerical methods are developed to
solve the equation, such as finite volume method (FVM) [13] and
the finite element method (FEM) [7]. Other methods, such as the
lattice Boltzmann method (LBM) [14,15], have also been developed
to calculate the effective thermal conductivity at sub-continuum
scale by solving BTE [8,16]. All these approaches are based on
physical modeling, i.e., solving partial differential equations
(PDE), which generally requires a high computational cost. On
the other hand, experiments can always be carried out to study
the heat transfer in composite materials [17]. The issues include
the cost of experiments and uncertainties in the measurements.

With the rapid development of machine learning methods
recently [18], there has been a growing interest to develop surro-
gate models to solve engineering problems based on data analysis
while bypassing the detailed understanding of the physical
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mechanism or conducting the experimental measurements. For
example, Zhan et al. tried different machine learning models to
predict the interface thermal resistance between two materials
and found that machine learning methods can be more accurate
than the commonly used acoustic mismatch model and diffuse
mismatch model [19]. Among the machine learning methods, the
support vector regression (SVR) [20–22] is a simple, accurate and
reliable model for non-linear regression analysis [23]. Besides the
SVR, Gaussian process regression (GPR) [24] is another conven-
tional machine learning method for regression and can be used
to solve the non-linear regression problems [25]. Since predicting
the effective thermal conductivities of composite materials from
various factors is a non-linear regression problem, SVR and GPR
can be suitable. In addition to SVR and GPR, the deep learning
method using neural network [26,27] has been developing fast
and successfully applied to image recognition and object detection
as a modern approach of computer vision methods [28,29]. Convo-
lution neural network (CNN) [30,31] has been widely used in face
recognition and object detection, and achieved very good accuracy.
For the composite materials, it is also necessary to extract struc-
tural features and find out the correlation between these structures
and the final effective property. Similar to face recognition, CNN
can be adopted to capture the features of the microstructure in
composite materials.

Based on the considerations above, we propose a framework to
use machine learning methods, including SVR, GPR and CNN to
study the heat transfer in composite materials and porous media
in this work. Machine learning approaches can be regarded as
semi-analytical models, and from this perspective it is similar to
EMT because it can provide a fast prediction with negligible com-
putational cost. The difference is that EMT is based on physical
understanding, but machine learning is based on data analysis.
We emphasize that the machine learning approach is a comple-
ment (not a replacement) of physical modeling and experimental
measurements. It can be regarded as a surrogate model that can
provide a fast prediction of a composite material without solving
time-consuming PDE or conducting experiments. Such a general
idea of extracting information from data has been recently demon-
strated in material science community and the importance has
been realized [32–34]. To demonstrate the capacity of machine
learning methods for heat transfer analysis, we created a database
using the quartet structure generation set (QSGS) [16] to generate
composite material structure and applying LBM to calculate the
effective thermal conductivity. We remark that such a choice of
database is not necessary to conduct our machine learning

analysis. We choose this method because the data set can be easily
obtained for demonstration purpose. The database can also be
taken from experimental results or other reliable approaches, but
the availability is limited right now. Throughout the manuscript,
we regard LBM results as ‘‘accurate”. This is reasonable because
the results obtained from the energy BTE follow the physical laws
for heat diffusion in macroscopic composite systems (the sub-
continuum effects like interface thermal resistance and size effect
are neglected for simplicity). Using these data as the training data
set, we applied the SVR model, GPR model, and CNN model to
predict the effective thermal conductivity of composite materials.
We compared the root mean square error (RMSE) with that of
Maxwell-Eucken model and Bruggeman model and showed that
they can be more accurate than these EMT models. The advantages
and drawbacks of the machine learning approaches are also
discussed.

2. Methodology and simulation process

2.1. Support vector regression and Gaussian process regression

SVR and GPR are supervised learning methods for regression
analysis [23,24,34,37] that make different assumptions. In terms
of studying heat transfer in composite materials, both of them
can be used to obtain models to predict effective thermal conduc-
tivities (or ‘‘objective values”) from the distribution and properties
of the inclusions (or ‘‘descriptors”). The parameters of the models
are learned from training data set containing n pieces of data,
D = {(xi, yi) | i = 1, 2. . . n}, among which xi are vectors composed
of all descriptors and yi are objective values.

In order to solve non-linear regression problems, SVR maps the
input space (variables are the descriptors) into a high dimensional
feature space (variables are nonlinear transformation of the
descriptors), and then perform linear regression in the feature
space [35]. The feature space is determined by kernel functions,
so the regression function will be a linear combination of these
functions. In our work, we choose the Gaussian function [24],
which is also called Radial Basis Function (RBF), as the kernel
function:

Kðx;xiÞ ¼ exp �kx� xik2
2r2

 !
¼ expð�ckx� xik2Þ; ð1Þ

which is commonly used if there is no prior knowledge about the
real distribution of the data. The final regression function is

Nomenclature

D training data set
xi vectors of descriptors
yi objective value
w weight vector
b bias
C penalty factor
k1 (W/mK) thermal conductivity of matrix
k2 (W/mK) thermal conductivity of inclusion
v2 volume fraction of inclusion
k (W/mK) effective thermal conductivity
cd core distribution probability
Di directional growth probability
t (s) real time
(qcp)m volume thermal capacity of matrix
(qcp)i volume thermal capacity of inclusion

p volume fraction of growing phase
r location vector
dt time step
ga evolution variable
geqa equilibrium distribution of ga
ea discrete velocity
c pseudo sound speed
y0i predictive value

Greek symbols
c width of the Gaussian function
ai;a�

i Lagrange multiplier
s dimensionless relaxation time
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