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a b s t r a c t

Gas slip flow is observed in a micro scale channel whose characteristic length is less than about 10 lm
under atmospheric conditions. To analyze the slip flow, the energy equation with the viscous dissipation
term is solved with a boundary condition which includes a factitious sliding shear work term due to the
slip at the wall to compensate the energy balance. Recently, an alternate method which uses the bound-
ary condition without inclusion of the factitious sliding shear work term has been proposed. However, it
seems that physics of the slip flow has not been properly understood by researchers. In this paper to clar-
ify the issue, a very simple configuration, a steady state laminar slip flow in a hydro-dynamically fully
developed region of a circular micro-tube with an adiabatic wall, is considered. Also all thermo-
physical properties of the fluid are assumed to be constant. Theoretical justification to the boundary con-
dition of the energy equation is provided using the discontinuity of the velocity of the slip flow on the
wall.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In 1958 Maslen [1] proposed a modification of the thermal
boundary condition for an energy equation with the viscous dissi-
pation term for a gaseous slip flow in a micro-channel. An extra
term is added to the ordinary boundary condition to compensate
a factitious sliding shear work. Since then, many researchers (e.g.
Sparrow and Lin [2], Miyamoto et al. [3] and Ramadan [4]) solved
the slip flow in a channel using the proposed modified boundary
condition. Recently, Vocale et al. [5] proposed an alternate method
which uses the ordinary boundary condition, to calculate the gas-
eous slip flow in a micro-channel. Although, Hong and Asako [6]
provided a theoretical justification to Maslen’s boundary condition,
it seems that physics of this problem has not been properly under-
stood by researchers. Therefore, the authors try to provide an alter-
nate theoretical justification to this problem, including the recent
proposed method by Vocale et al. [5].

2. Analysis

To clarify the problem a very simple configuration, such as a
steady state laminar slip flow in a hydro-dynamically fully devel-

oped region of a circular micro-tube with an adiabatic wall is con-
sidered. Thermo-physical properties of the fluid including the
density are assumed to be constant. A schematic diagram of the
problem is depicted in Fig. 1. The velocity in the hydro-
dynamically fully developed region of the slip flow is expressed as

u ¼ uc 1� r2

ðd=2Þ2
( )

þ us ð1Þ

where us is the slip velocity and uc is the velocity difference
between the velocity at the center and the slip velocity. The
momentum equation is expressed as
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Substituting Eq. (1) into Eq. (2), we obtain
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¼ �16l
d2 uc ð3Þ

The general form of the energy equation under no volume force
can be found in any textbook as (e.g. [7,8]).
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where f
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is the internal force and expressed in the fully developed
region as
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/ is the dissipation function and expressed in the fully developed
region as
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Integrating Eq. (4) over the control volume shown by dashed
lines in Fig. 1, then we obtain
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Here, we assume no heat input from s1 and s3 boundaries. Then,
Eq. (7) can be rewritten as
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where _m is the mass flow rate. hx¼0, hx¼L, V
!2

x¼0 and V
!2

x¼L are the cross
sectional average values at x = 0 and x = L and are obtained from the
following equations:
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Note that the depth of the control volume in h direction is one
radian.

Attention will turn to the RHS of Eq. (8). Since s2 is the axisym-
metric boundary, the RHS of Eq. (8) is expressed asZ
C:V :
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Since sxx is zero on s1 and s3 in the fully developed region, Eq. (10)
becomesZ
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Then, Eq. (8) can be rewritten as
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Let’s consider three flow situations. The first one is a no slip flow
in a stationary circular tube. In this case, the flow velocity at the
center is uc and the velocity on the wall is us ¼ 0. The second one
is no slip flow in a circular tube whose wall is ‘‘moving” in the flow
direction with velocity, us. The velocity at the center is uc þ us. The
last one is a slip flow in a stationary circular tube with the slip
velocity, us. The velocity profile of these three cases is expressed
by Eq. (1). Note that the pressure gradients of these three cases
are identical since wall shear forces are identical. Also Eq. (12)
which is the integral form of the energy equation, is available for
these three cases. In the case of no slip flow in a stationary circular
tube, the velocity on the tube wall is ur¼d=2 ¼ 0. Then, Eq. (12)
becomes

Fig. 1. Schematic diagram of a problem.

Nomenclature

d tube diameter, m
f Maxwell’s reflection coefficient

f
!

internal force per unit volume related to stresses, N/m3

fr, fh, fx force components, N/m3

h specific enthalpy, J/kg
Kn Knudsen number
‘ mean free path, m
L control volume length, m
_m mass flow rate, kg/s
p static pressure, Pa
_qw external wall heat flux, W/m2

r, h, x cylindrical coordinates
T temperature, K
t time, s
u, v velocity components, m/s
V
!

velocity vector, m/s

Greek symbols
k thermal conductivity, W/(m�K)
l viscosity, Pa�s
q density, kg/m3

/ dissipation function, m2/s2

s shear stress, N/m2

Superscript
�� cross sectional average value

Subscript
c center
s slip flow
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