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challenging and important part during the system identification. NARX can be formulated as a linear-in-
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the-parameters model, then the identification problem can be solved to obtain a sparse solution from the
viewpoint of the weighted /; minimization problem. Such an optimization problem not only minimizes
the sum squares of model errors but also the sum of reweighted model parameters. In this paper, a novel
algorithm named Bayesian Augmented Lagrangian Algorithm (BAL) is proposed to solve the weighted
l; minimization problem, which is able to obtain a sparse solution and enjoys fast computation. This
Augmented Lagrangian is achieved by converting the original optimization problem into distributed suboptimization problems
Bayesian solved separately and penalizing the overall complex model to avoid overfitting under the Bayesian
NARX framework. The regularization parameter is also iteratively updated to obtain a satisfied solution. In
particular, a solver with guaranteed convergence is constructed and the corresponding theoretical proof is
given. Two numerical examples have been used to demonstrate the effectiveness of the proposed method
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in comparison to several popular methods.
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1. Introduction

NARX is a popular model class that can describe complex dy-
namic behaviour of nonlinear systems [1,2]. The importance of
identifying nonlinear systems using NARX has been widely recog-
nized owing to the following advantages. First, NARX may provide
a more compact model for nonlinear system compared to Volterra
series model class. Second, NARX can be formulated as a linear-
in-the-parameters model when the unknown parameters in the
nonlinear functions are given a priori. Then the model structure
can be determined using regression algorithms, such as Least
absolute shrinkage and selection operator (Lasso) [3] and sparse
Bayesian learning (SBL) [4]. However, the NARX model structure
given a priori often contains redundant terms. In other words,
the predetermined model term dictionary is generally huge and
most terms in the dictionary should not be selected into the final
model. Therefore, structure determination is a key challenge and
an important part in system identification.

Subset selection methods have been widely used to select
important terms from the dictionary, leading to a parsimonious
model. For the linear-in-the-parameters model, it can be consid-
ered as finding a sparse solution which can be solved from the
viewpoint of the [; minimization problem. Lasso is a widely used
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method to solve the [; minimization problem, which tends to find
a compromise model between model accuracy and complexity.
However, when the columns of dictionary are highly correlated
rather than orthogonal or nearly so, Lasso algorithm generally
leads to a suboptimal model with some redundant terms.

To obtain a more compact model, many regression problems
are converted into the weighted [; minimization problem to find
a maximally sparse solution. It also has been proved that weighted
I; minimization tends to perform better than conventional [y mini-
mization under certain conditions [5]. SBL is recently proposed un-
der the Bayesian framework to solve the weighted [; minimization
problem and has been proved to be an efficient method in some
practical applications. SBL has several advantages summarized as
follows. Based on the priori knowledge of the unknown system, it
can build a sparse model by selecting candidate dictionary terms.
In addition, it can iteratively calculate the solution and can avoid
overfitting problem with pruning method. However, the solution
is calculated by using third party solvers (e.g. CVX [6]) at each
iterative step, leading to large computations.

In this paper, the main objective of the proposed BAL method
is to build a sparse NARX model in a computationally efficient
manner. This is achieved by transforming the single weighted [; op-
timization problem into several distributed suboptimization prob-
lems, and then deriving the corresponding solvers. Meanwhile, the
regularization parameters that control the model complexity are
iteratively updated under Bayesian framework. The new idea is
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inspired by both Split Augmented Lagrangian Shrinkage Algorithm
(SALSA) that is recently proposed for solving distributed optimiza-
tion problem and SBL that is able to produce a sparse model. The
new BAL method enjoys the advantages of the both SALSA and
SBL methods but avoid their disadvantages as it can build a sparse
model than SALSA and runs faster than SBL. More specifically,

e Using Bayesian learning can penalize the complex model
to avoid overfitting problem and it is able to capture the
model uncertainty [4]. In addition, the information about
the unknown system can be converted into priors which can
help to identify the unknown system.

e BAL converts the weighted [; minimization problem into
several subproblems that can be exactly solved without
using third party solvers (e.g. CVX). The memory and com-
putational requirement can be reduced in comparison to
those centralized methods [7]. Therefore, the running time
of procedure could be saved.

e The regularization parameter is iteratively updated to in-
crease the opportunity to find a satisfied solution.

The theoretical analysis regarding to solution existence,
uniqueness and algorithm convergence is given. Two nonlinear
examples are used to illustrate the effectiveness of BAL, and several
popular methods are used for comparison, including SBL, Lasso,
SALSA and Orthogonal Forward Regression method (OFR) method.

2. Preliminary
2.1. NARX model

NARX model is a widely used representation for input-output
relationship of an unknown nonlinear system. The system can be
described by some unknown function of lagged system inputs and
outputs [8]:

yie) = (e = 1), ...yt —my), u(t — 1), ..., ult —ny)) + &(t)
= f(x(t)) + &(¢)

where u(t), y(t) represent system input and output at the time
interval t, respectively, with t = 1,2,...,N and N being the
training data size. n, and n, are the largest lags of input and output.
Assuming &(t) is i.i.d. Gaussian distributed noise with zero mean
and variance o2,

Suppose the model inputis x(t) = [y(t —1), ..., y(t —ny), u(t —
1), ..., u(t—ny)], then the candidate dictionary can be represented
as [9]

P= [pl (X(t))7 pz(x(t))a .o 7pM(X(t))]

Here P is the N x M matrix which includes some linear and
nonlinear terms of x(t). The NARX model representation can be
rewritten as a linear combination of some nonlinear functions such
as polynomials and neural networks

M
y() =" pi(x(0)) i + &(t)

i=1

which can be described as the following matrix format:

y=PO +§ (1)

where vectory = [y(1),y(2), ..., ¥(N)]" represents the system
output, vector & = [£(1), £(2), ..., E(N)]" represents the residual,
and @ = [©;,0,,...,O4]" represents the parameter being
estimated.

For obtaining an optimal representation of the unknown non-
linear system, the size of predetermined candidate pool P is often
large enough so that it owns the ability to describe nonlinearities

of the unknown nonlinear system. However, most of the terms
in the candidate pool are redundant and should not be selected
into the final model. A sparse solution with good generalization
performance is always desirable.

2.2. Sparse Bayesian Learning

Recently, SBL is proposed as an iterative reweighted [; method
to build a sparse model. The main idea of SBL is briefly reviewed
as following. All the unknowns are considered as stochastic vari-
ables which have certain probability distributions in the process of
Bayesian modelling [4]. Fory = P® + &, the likelihood of the data
y given @ is described as

1
P(y|©) = N(yIPO, Al) eXP[—ﬁ ly —PO|3]

where A = 2. Suppose P( @) has the following prior distribution:

1 M
P(O) o exp[—5 ) | &(6))]
i=1

The function g.(®) is usually concave, non-decreasing for |®],
which can enforce sparsity of the solution. Meanwhile, suppose
P(O) = ]_[?1173(@,»), then according to the Bayes’ rule, the pos-
terior distribution over @ can be calculated:

_ Pylem(e)
PLew) = [ Py|@)P(0)d6

However, the posterior P(@|y) is non-Gaussian, which makes
the identification problem intractable. Generally, one tends to ap-
proximate P( @|y) as the Gaussian distribution, then the problem
can be solved efficiently. Therefore, an optimal hyperparameter
y = [yi,-..,yul € Rf‘ is rationally estimated such that the
Gaussian-distribution P(@ly, ¥) is a good relaxation to P(@ly).
For more details, please review [4]. Under the Bayesian framework,
the problem can be solved from the following viewpoint [7]:

min_ PO —y|?+ 10T '@ +log |1+ PIP"| 2)
y=>0,

with I' = diag[y]. However, it is difficult to directly obtain model
coefficients @ and y according to the formula (2). Therefore, we
rewrite Eq. (2) as

min g(@, y)— h(y)
y>0,0

©?2
with g(@. ) = [PO —yli3 + 435 and h(y) = —log [2I +

PI'PT|. Here, g( @, y)is jointly convex for @, y and h(y ) is convex
for y. Since function h(y) is differentiable over y, @y, and Vi1
can be obtained by

[Oki1, V1] = arg min_g(6, ) = V,h(7i)y 3)
y=0,

Based on the principles in convex analysis, the negative gradient of

h(y) at y can be expressed as

- V,h(7)" = =V, (—log |[AI+PI'P|)
= diag[P" (Al + PIP")"'P]

|V:?k

For convenience, define o = diag[P"(AI + PIPT)~'P]. With
these definitions, the optimization problem (3) can be further
formulated as
92
[Ors1. Vo] = arg min_ PO —y|3 + 4 2(7’ +(@)y)  (4)
¥ =0, - /j
j
here () is the jy; diagonal element of the matrix ay. It is worth
pointing out that the function (4) is jointly convex in @, y, which
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