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a b s t r a c t

This technical note studies impulsive stabilization of general nonlinear systems with time-delay.
Distributed time-delay is considered in the proposed nonlinear impulsive controller. Using Lyapunov–
Razumikhin method, an exponential stability criterion is constructed, which is then applied to inves-
tigate stabilization of a linear time-delay system under linear distributed-delay dependent impulsive
control. Sufficient conditions on the system parameters, impulsive control gains, impulsive instants and
distributed delays are obtained in the form of an inequality for global exponential stability. In these
results, it is shown that an unstable time-delay system can be successfully stabilized by distributed-delay
dependent impulses. It is worth noting that the proposed impulsive controllers are independent of the
system states at each impulsive instant, and the states with distributed delays play the key role in the
stabilization process. A numerical example is provided to demonstrate the efficiency of the main results.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Time-delay systems have been intensively studied in the past
decades, mainly due to the ubiquity of time delays in physical pro-
cesses such as proliferation process for solid avascular tumor [1],
scattering process [2], milling process [3], and temperature con-
trol [4]. Stability is one of the fundamental issues in system design,
analysis and control. Recently, impulsive control has been shown
to be a powerful approach to stabilize time-delay systems, and
various stability and stabilization results have been obtained for
impulsive time-delay systems (see [5–7]).

In general, it takes non-neglectable time to sample, process and
transfer the impulsive information in the controller. Therefore, it is
practically needed to consider time-delay in impulsive controllers.
There are many recent attempts to investigate time-delay systems
with delayed impulses (see, for example, [8–17]). Typically, [15]
studied stabilization of a class of delay-free nonlinear systems by
linear delayed impulses, and then [16] investigated the exponen-
tial stability of time-delay systems with nonlinear delayed im-
pulses. The most recent results about delay-dependent impulsive
control of time-delay systems were reported in [17]. The author
studied a class of linear systemswith both discrete and distributed
delays subject to delayed impulses. However, from the control
point of view, the delay part of the impulsive controller in [17]may
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not contribute to the system stability, which could be contrary to
what the authors have claimed in [17]. See Remark 1 for detailed
discussions.

On the other hand, in the above mentioned references, only
discrete delays were considered in the impulsive controllers. As
another type of time-delay, distributed delay has been widely
employed in biological and industrial systems to describe time-
delay in the spread of disease [18], network connections [19],
epidemicmodel [20], etc. To our best knowledge, distributed-delay
dependent impulsive control has not been studied for stabilization
of time-delay systems. The idea of distributed-delay dependent
impulsive control is as follows: the jumps of systems states do not
rely on the states at each impulsive instant or the states at history
time, but depend on the accumulation (or average) of the system
states over a history time period.

Motivated by the above discussion, in this technical note, we
study stabilization problem of general nonlinear time-delay sys-
tems by distributed-delay dependent impulsive control. Stability
criteria for the impulsive control systems are constructed by using
Razumikhin technique and Lyapunov functions. The remainder of
this technical note is organized as follows. In Section 2, stabiliza-
tion problem of time-delay systems is formulated and a class of
distributed-delay dependent impulsive controllers is proposed. In
Section 3, we construct sufficient conditions for impulsive stabi-
lization of nonlinear and linear time-delay systems, respectively.
An example with several numerical simulations are provided in
Section 4 to illustrate the main results. Finally, we summarize our
results in Section 5.
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2. Preliminaries

Through out this technical note, let N denote the set of positive
integers, R the set of real numbers, R+ the set of nonnegative real
numbers, and Rn the n-dimensional real space equipped with the
Euclidean norm ∥ · ∥. For any matrix A ∈ Rn×n, let AT denote
the transpose of A, λmax(A) the largest eigenvalue of A, and ∥A∥ =√
λmax(ATA), i.e., the norm of A induced by the Euclidean norm.

Denote I ∈ Rn×n the n × n identity matrix. For a, b ∈ R with
a < b and S ⊆ Rn, we define PC([a, b], S) =

{
ψ : [a, b] →

S
⏐⏐⏐ψ(t) = ψ(t+), for any t ∈ [a, b); ψ(t−) exists in S, for any t ∈

(a, b]; ψ(t−) = ψ(t) for all but at most a finite number of points
t ∈ (a, b]

}
, whereψ(t+) andψ(t−) denote the right and left limits

of function ψ at t , respectively. For a given constant τ > 0, the
linear spacePC([−τ , 0],Rn) is equippedwith the norm defined by
∥ψ∥τ = sups∈[−τ ,0]∥ψ(s)∥, for ψ ∈ PC([−τ , 0],Rn). For constant
ρ > 0, define B(ρ) = {x ∈ Rn

| ∥x∥ ≤ ρ}.
Consider the following nonlinear time-delay system subject to

distributed-delay dependent impulses:⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = f (t, xt ), t ∈ [tk−1, tk),

∆x(t) = Ik(t,
∫ t

t−rk

x(s)ds), t = tk, k ∈ N,

xt0 = ψ,

(1)

where x ∈ Rn, 0 ≤ t0 < t1 < · · · < tk < · · · with limt→∞tk =
∞, and ∆x(t) = x(t+) − x(t−). Here, we assume that x is right-
continuous at each t = tk, i.e., x(t+k ) = x(tk). xt ∈ PC([−τ , 0],Rn)
is defined as xt (s) = x(t + s) for s ∈ [−τ , 0], where τ denotes
the time-delay in the continuous dynamics of system (1). rk > 0
represents the distributed delay in the impulse satisfying rk ≤ r ≤
τ for all k ∈ N. Assume f : R+ × PC([−τ , 0],D) → Rn and
Ik : R+ × D → Rn, where D ⊆ Rn is an open set, satisfy all the
sufficient conditions in [21] so that system (1) admits a solution
x(t) := x(t, t0, ψ) that exists on a maximal interval [t0 − τ , t0 + T )
where 0 < T ≤ ∞, and moreover, f (t, 0) = Ik(t, 0) = 0 for all
k ∈ N. Next, we further assume that, for some ρ > 0 andB(ρ) ⊆ D,

(A1) there exists a positive constant L1 such that ∥f (t, φ)∥ ≤
L1∥φ∥τ for any (t, φ) ∈ R+ × PC([−τ , 0],B(ρ));

(A2) there exists a positive constant L2 such that ∥Ik(t, y) −
Ik(t, z)∥ ≤ L2∥y− z∥ for any t ∈ R+ and y, z ∈ B(ρ);

(A3) there exist positive constants σ and σ such that σ ≤ tk −
tk−1 ≤ σ for all k ∈ N, i.e., all the impulsive intervals are
uniformly bounded;

(A4) there exists a nonnegative integer l such that lσ < r ≤
(l + 1)σ , i.e., there are at most l impulses on each interval
[tk − rk, tk).

Remark 1. Impulsive system (1) is equivalent to the following
control system:

ẋ = f (t, xt )+ u(t), (2)

with impulsive controller (IC)

u(t) =
∞∑
k=1

Ik(t,
∫ t

t−rk

x(s)ds)δ(t − tk) (3)

where δ(·) is the Delta Dirac function. Recent results about delay-
dependent impulsive control of time-delay systems were reported
in [17], and the following form of delay-dependent impulses was
considered:

x(tk) = Γkx(tk − ςk), (4)

where Γk ∈ Rn and ςk denotes the discrete delay in the impulse.
Rewrite (4) as∆x(tk) = −x(t−k )+Γkx(tk−ςk), then the correspond-
ing IC is

u(t) =
∞∑
k=1

[−x(t)+ Γkx(t − ςk)]δ(t − tk), (5)

which depends not only on the states at a history instant (i.e., x(tk−
ςk)) but also on the states at the impulsive time (i.e., x(t−k )). There-
fore, sufficient conditions obtained in [17] could guarantee the
IC (5) to stabilize the time-delay system, but the authors cannot
make conclusion that the delayed states contribute to the systems
stability. However, it can be seen that IC (3) relies purely on the
distributed-delay dependent states, i.e., the distributed delays in
IC (5) play a key role in stabilization of the nonlinear system.

The objective of this technical note is to use Lyapunov-
Razumikhin method to establish exponential stability criteria for
impulsive system (1). Next, we shall list exponential stability and
Lyapunov function related definitions, respectively.

Definition 1. The trivial solution of system (1) is said to be
exponentially stable (ES), if there exist positive constantsρ0,M and
α such that

∥x(t)∥ ≤ M∥ψ∥τ e−α(t−t0), t ≥ t0, (6)

for any ψ ∈ PC([−τ , 0],B(ρ0)). Furthermore, if (6) holds for any
ψ ∈ PC([−τ , 0],Rn), then the trivial solution of (1) is said to be
globally exponentially stable (GES).

Definition 2. Function V : [t0 − τ ,∞) × B(ρ) → R+ is said to
belong to the class of ν0 if

• V is continuous on [tk−1, tk) × B(ρ), and for each x ∈ Rn and
t ∈ [tk−1, tk), lim(t,y)→(t−k ,x)

V (t, y) = V (t−k , x) exists;

• V (t, x) is locally Lipschitz in x ∈ B(ρ), and V (t, 0) = 0 for all
t ≥ t0.

Definition 3. Given a function V ∈ ν0, the upper right-hand
derivative D+V (t, φ(0)) along the solution of system (1) is defined
by D+V (t, φ(0)) = lim suph→0

1
h [V (t + h, φ(0) + hf (t, φ)) −

V (t, φ(0))], where (t, φ) ∈ [t0,∞)× PC([−τ , 0],B(ρ)).

3. Stabilization results

In this section, we first construct an exponential stability crite-
rion for system (1).

Theorem 1. Suppose assumptions (A1)– (A4) are satisfied, and there
exist a function V ∈ ν0, and positive constants c1, c2, p, c, q, K1, K2 and
ν such that

(i) c1∥x∥p ≤ V (t, x) ≤ c2∥x∥p for all (t, x) ∈ [t0 − τ ,∞)× B(ρ);
(ii) D+V (t, φ(0)) ≤ cV (t, φ(0)) for all t ∈ {t ∈ [t0,∞) |

t ̸= tk, k ∈ N} and φ ∈ PC([−τ , 0],B(ρ)), whenever
V (t + s, φ(s)) ≤ qV (t, φ(0)) for all s ∈ [−τ , 0];

(iii) V (t, x+y) ≤ K1V (t, x)+K2V (t, y) for all t = tk and x, y ∈ B(ρ)
satisfying x+ y ∈ B(ρ);

(iv) V (t, x+ Ik(t, rkx)) ≤ νV (t−, x) for all t = tk and x ∈ B( ρ

1+rL2
);

(v) q > {K1ν + K2
c2
c1
[r2L2(L1 + lL2)]p}−1 > ecσ ,

then the trivial solution of system (1) is ES.

Proof. Let d1 = K1ν and d2 = K2
c2
c1
[r2L2(L1+lL2)]p. From condition

(v), we can find a small enough constant α such that

q >
eατ̄

d1 + d2eατ̄
>

1
d1 + d2eατ̄

> e(c+α)σ , (7)
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