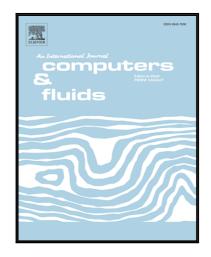
Accepted Manuscript

Parallel Performance for a Real Time Lattice Boltzmann Code

Mark A. Woodgate, George N. Barakos, Rene Steijl, Gavin J. Pringle


PII: \$0045-7930(18)30102-6

DOI: 10.1016/j.compfluid.2018.03.004

Reference: CAF 3765

To appear in: Computers and Fluids

Received date: 21 December 2016 Revised date: 29 January 2018 Accepted date: 1 March 2018

Please cite this article as: Mark A. Woodgate, George N. Barakos, Rene Steijl, Gavin J. Pringle, Parallel Performance for a Real Time Lattice Boltzmann Code, *Computers and Fluids* (2018), doi: 10.1016/j.compfluid.2018.03.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Highlights

- Careful implementation of the LMB can lead to substantial changes in the required CPU time.
- More than 10 times faster execution was finally obtained.
- Using parallel implementation real-time execution of the LBM is possible using relatively small number of cores.
- The use of KNL opens the gate for linking high performance clusters with real-time wakes in flight simulators.

Download English Version:

https://daneshyari.com/en/article/8942127

Download Persian Version:

https://daneshyari.com/article/8942127

<u>Daneshyari.com</u>