

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation

Shohei Kuroda ^{a,*}, Taira Nagaishi ^a, Mitsuo Kameyama ^b, Kenji Koido ^c, Yuna Seo ^a, Kiyoshi Dowaki ^a

^a Department of Industrial Administration, Graduate School of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan

^b Japan Blue Energy Co., Ltd., 3-20 Kioicho, Chiyoda-ku, Tokyo, 102-0094, Japan

^c Endowed Chair in Renewable Energy, Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanayagawa,

Fukushima, Fukushima, 960-1296, Japan

ARTICLE INFO

Article history: Received 15 March 2018 Received in revised form 30 June 2018 Accepted 8 July 2018 Available online 2 August 2018

Keywords: Hydrogen purification Pressure swing adsorption HAS-Clay Carbon dioxide separation Breakthrough curve Specific energy demand

ABSTRACT

Hydroxyl aluminium silicate clay (HAS-Clay) is a novel adsorbent in pressure swing adsorption for CO_2 capture (CO_2 -PSA) and can also adsorb H₂S. To investigate the performance of HAS-Clay as a CO_2 -PSA adsorbent, multicomponent breakthrough curves were determined using experimental measurements and theoretical models, and, based on those results, CO_2 -PSA simulations were conducted. The breakthrough curves produced from the theoretical models agreed well with those derived from experiment. CO_2 -PSA with HAS-Clay could purify biomass-gasification-derived producer gas of contaminants (carbon dioxide, methane, carbon monoxide, and hydrogen sulfide) with high CO_2 recovery and low energy input. The CO_2 recovery rate of CO_2 -PSA with HAS-Clay was 58.4%, and the CO_2 purity was 98.4%. The specific energy demand was 2.83 MJ/kg-CO₂. In addition, the H₂S regenerability of HAS-Clay was investigated. The results show that HAS-Clay retained the ability to adsorb H₂S at a steady-state value of 0.02 mol/kg for the regeneration cycles. Therefore, it is suggested that CO_2 -PSA with HAS-Clay is suitable for CO_2 separation from multicomponent gas mixtures.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Hydrogen (H₂) is attracting attention as a clean, abundant, and storable energy source. The combustion of hydrogen emits no

air pollutant such as carbon dioxide (CO_2), sulfur dioxide (SO_2), and nitrogen oxide (NO_x), and hydrogen is generally stored in high-pressure gas vessels or solid metal hydrides. Because of its low molecular weight, hydrogen has a high energy density, making it suitable as an alternative transport fuel [1] and other

* Corresponding author.

E-mail address: 7412047@alumni.tus.ac.jp (S. Kuroda).

https://doi.org/10.1016/j.ijhydene.2018.07.065

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Nomenclature		q_i	particle average adsorbed concentration [mol/kg]
Aw	cross sectional area of the wall [m ²]	q _{eq,i}	isotherm [mol/kg] specific saturation adsorption capacity of species i [mol/kg] particle radius [m] ideal gas constant [J/K mol] Reynolds number [–] Schmidt number [–]
a _{i,1}	adsorption equilibrium constant of species i [mol/ kg]	$q_{m,i}$	
$a_{i,2}$ b_i $b_{\infty,i}$ C_i C_{H_2S} $C_{p,ads}$ $C_{p,w}$ d_{bed} d_p D_{ax} $D_{e,i}$	kg] adsorption equilibrium constant of species i [mol/ kg·K] adsorption equilibrium constant of species i [kPa ⁻¹] adsorption constant of component i at infinite temperature [kPa ⁻¹] concentration of component i [kmol/m ³] H ₂ S concentration [ppm] specific heat capacity of adsorbent [J/kg·K] specific heat capacity of wall substance [J/kg·K] vessel diameter [m] nellet diameter [m]	r_p R Re S_{cap} t_{BT} T T_a T_w v \dot{v} \dot{V} V_m	
$D_{e,i}$ $D_{k,i}$ $D_{m,i}$ F h $- \Delta H_i$ k_i $k_{T,b-w}$ $k_{T,w-a}$ l_w M_{w_i} P	effective diffusion coefficient [m ² /s] Knudsen diffusion coefficient [m ² /s] molecular diffusion coefficient [m ² /s] mass flow [kg/s] fluid phase mass specific enthalpy [kJ/kg] heat capacity of compound i [J/mol] mass transfer coefficient for LDF [1/s] heat transfer coefficient for bed wall to environment [W/m ² ·K] bed wall thickness [m] molecular weight of species i [g/mol] pressure [kPa]	$W_{sorbent}$ w_i ε_{bed} ε_p ε_{tot} μ λ_{eff} λ_w ρ ρ_{bed} ρ_w τ	adsorbent weight [g] mass fraction for component i [-] bed void fraction [-] pellet void fraction [-] total void fraction [-] gas viscosity [Pa·S] effective thermal conductivity [W/m·K] thermal conductivity of the wall [W/m·K] fluid phase mass density [kg/m ³] bed bulk density [kg/m ³] mass density of the wall material [kg/m ³] pore tortuosity [-]

uses requiring fuel portability [2]. Hydrogen is obtained from many resources via different conversion technologies (e.g., steam methane reforming [3], water electrolysis [4], and biomass gasification [5]). Among such conversion technologies, biomass gasification is one of the most promising technologies for hydrogen generation [6]. Biomass is a sustainable resource and is clean, renewable, and abundant [7].

From biomass gasification, the generated producer gas contains hydrogen and other impurities including carbon monoxide (CO), CO₂, methane (CH₄), and traces of hydrogen sulfide (H₂S, ca. 20–230 ppm [8]). In particular, H₂S removal is required to prevent catalyst poisoning, that often causes voltage reduction in fuel cells and shortens the catalyst lifetime. The criteria for hydrogen quality are standardised as $H_2 > 99.97\%$, CO₂ < 2.0 ppm, CO < 0.4 ppm, and $H_2S < 0.004$ ppm [9].

An effective method for removing the impurities is pressure swing adsorption (PSA) because of its high economic performance. PSA for H_2 purification usually uses multiple beds, and the adsorption and desorption operations are carried out simultaneously [10–13]. Each bed has a series of layers of different adsorbents. The first layer usually removes water vapour, commonly using activated alumina or silica gel, followed by a second layer of activated carbon, which adsorbs CO₂. The third layer removes the lighter impurities such as CO and CH₄. The adsorbent selectivity has a great impact on the purification efficiency, as well as the operating pressure and temperature. In particular, producer gas compression power during PSA accounts for a large portion of the auxiliary power consumption in biomass-to-hydrogen processes, suggesting that lower operating pressures are required for utility power reduction [14].

Low-pressure operation has been recently achieved using a new adsorbent, hydroxyl aluminium silicate clay (HAS-Clay) [15]. HAS-Clay is an amorphous aluminium hydroxide silicate (SiO₂/Al₂O₃/H₂O) that has excellent CO₂ adsorptivity and can possibly also be used for H₂S adsorption. It has been suggested that the operating pressure can be reduced from 700 to 400 kPaG if CO₂ is pre-separated by HAS-Clay [15]. Another strong point is that HAS-Clay could play a role as H₂S adsorbent during its use as a PSA adsorbent for bio-H₂ purification. Therefore, the H₂S adsorption performance of HAS-Clay for producer gas cleaning should be investigated.

In this study, the performance of HAS-Clay as an adsorbent for CO_2 -PSA was investigated: (1) the physical properties and adsorption isotherm of HAS-Clay were experimentally determined, followed by theoretical modelling to obtain multicomponent breakthrough curves, (2) the multicomponent Download English Version:

https://daneshyari.com/en/article/8942820

Download Persian Version:

https://daneshyari.com/article/8942820

Daneshyari.com