Contents lists available at ScienceDirect

Optical Materials

journal homepage: www.elsevier.com/locate/optmat

Spectroscopy of divalent samarium in alkaline-earth fluorides

E.A. Radzhabov^{a,b,*}

^a Vinogradov Institute of Geochemistry, Russian Academy of Sciences, Favorskii Street 1a, P.O.Box 4019, 664033 Irkutsk, Russia
^b Irkutsk State University, Physics Department, Gagarin Boulevard 20, 664003 Irkutsk, Russia

ARTICLE INFO

Keywords: CaF₂

Samarium

Absorption

Time-resolved

Spectroscopy

Emission

SrF₂

BaF₂

ABSTRACT

Optical spectra (absorption, luminescence, decay of emission, spectra with time resolution) of Sm^{2+} ions in alkaline-earth fluoride crystals (CaF₂, SrF₂, BaF₂) in the wavelength range 120–900 nm at 7–300 K were studied. By additive coloration of about 60% of the original Sm^{3+} is converted to Sm^{2+} .

One component of the decay of the Sm^{2+} emission was observed in BaF_2 crystals with a lifetime of 16 ms (a slow component) and in CaF_2 crystals with a lifetime of 1.3 µs (fast component) at low temperature. In SrF_2 crystals, two decay of luminescence components are found in the millisecond and nanosecond time range. The luminescence spectra of the slow and fast components in CaF_2 , SrF_2 , BaF_2 are similar, which confirms their attribution to forbidden 4f-4f and allowed 5d-4f transitions, respectively. The results obtained made it possible to clarify the position of the excited levels of Sm^{2+} 4f($^5\text{D}_0$) and 5d(e_g) relative to the bottom of the conduction band of alkaline-earth fluorides.

1. Introduction

Samarium ions are introduced into alkaline earth fluorides in forms 2 + or 3+. Both ions effectively luminesce. The emission of Sm^{2+} is observed only at low temperatures, Sm^{3+} also luminescent at room temperature. The spectroscopy of divalent samarium was studied by several scientific groups in the 1960s [1,2] in connection with the development of laser technology. Decay of emission [3,4] and vibronic spectra were thoroughly studied. In recent studies, $\text{CaF}_2\text{-Sm}^{2+}$ crystals were considered as effective red x-ray scintillator [5]. Formation of divalent Sm in CsBr-Sm³⁺ is expected to be use in radio-photo-luminescent dosimetry [6].

The main topic of the present paper is to establish the processes of changing the valence of Sm^{3+} ions by additive coloration and to determine the positions of the excited $4f^6$ and $4f^55 d^1$ -levels within bans gap of alkaline earth fluoride crystals.

2. Experimental

Crystals were grown in vacuum in a graphite crucible by the Stockbarger method [7]. The graphite crucible contained three cylindrical cavities with a diameter of 10 mm and a length of 80 mm, which made it possible simultaneously to grow three samples with sizes $\emptyset 10 \times 50$ mm with different amounts of SmF₃. A few percent of CdF₂ were added into raw materials for purification from oxygen impurity

during growth.

Crystals BaF₂, SrF₂, CaF₂ with 0.01, 0.03, 0.1 mol.% of SmF₃ were grown. All samarium was in trivalent form. For the transformation of samarium ions into a divalent form, an additive coloration procedure was used.

Absorption spectra in the range 190–3000 nm were taken with spectrophotometer Perkin-Elmer Lambda-950, emission spectra were measured using grating monochromator MDR2 (LOMO). Emission, excitation spectra were measured with photomultiplier tube module Hamamatsu H6780-04 (185–850 nm). No emission spectrum correction needs to be performed as the sensitivity only weakly changed in the region of emission (400–800 nm).

3. Results

3.1. Mechanism of conversion $(Sm^{3+} to Sm^{2+})$

Additive colouring of the crystals was carried out in an autoclave made of stainless steel at temperatures of 700–850°C. Samples of the crystals and pieces of metallic calcium were placed in different containers or separated by metal foil in the same container. After evacuation to 10^{-2} - 10^{-3} Torr, the temperature increased up to 400°C. The samples were annealed at this temperature while pressure does not decrease down to 10^{-2} torr again. After heating to coloration temperature, the autoclave with the samples was kept in the oven for

* Vinogradov Institute of Geochemistry, Russian Academy of Sciences, Favorskii street 1a, P.O.Box 4019, 664033 Irkutsk, Russia. *E-mail address*: eradzh@igc.irk.ru.

https://doi.org/10.1016/j.optmat.2018.08.044

Received 26 December 2017; Received in revised form 8 April 2018; Accepted 17 August 2018 0925-3467/ © 2018 Elsevier B.V. All rights reserved.

Fig. 1. Absorption spectra of initial (a) and additively coloured (b) MeF_2 -0.03 mol. % SmF_3 crystals.

 $0.5{-}3\,h,$ depending on the thickness of the samples, samarium contamination and temperature. After coloration samples were polished.

As a result of additive colouring, initially colourless crystals of alkaline-earth fluorides acquired a colour, the saturation of which increased with increasing initial concentration of trivalent samarium. In the absorption spectra (Fig. 1), characteristic bands of divalent samarium [1] appeared.

A linear dependence of the 4f-5d absorption bands of Sm^{3+} before coloration and Sm^{2+} bands after additive coloration was observed. The absorption coefficients of the allowed 4f-5d transitions of the initial Sm^{3+} and the formed Sm^{2+} are close in magnitude (see Fig. 1), which indicates that a significant fraction of initial trivalent samarium ions has become divalent.

The linear increase in the absorption coefficient of the Sm²⁺ longwave band as a function of the concentration of the introduced SmF₃ is shown in Fig. 2. A similar dependence is also observed for other absorption bands of Sm²⁺ in the 200–500 nm region. It is known that in the crystal CaF₂-0.01 mol. % Sm²⁺ the absorption coefficient in the Sm²⁺ long wavelength band near 600 nm is equal to 9.3 cm^{-1} [8]. From this, one can draw the lines of the complete (100%) transformation Sm³⁺ \rightarrow Sm²⁺ on Fig. 2. One can see that about 60% of the original trivalent samarium is converted into a divalent form by additive coloration of the alkaline-earth fluoride crystals (see Fig. 2).

The molar absorption coefficients of Sm²⁺ in SrF₂ and BaF₂ crystals are still unknown. Based on the results presented on Fig. 2 it can be assumed that the molar absorption coefficients of Sm²⁺ in three crystals of CaF₂, SrF₂ and BaF₂ are close.

Intensive absorption bands in the vacuum ultraviolet region are found in additively coloured SmF₃-doped CaF₂, SrF₂, and BaF₂ crystals

Fig. 2. The dependence of the magnitude of the long-wave Sm^{2+} band in coloured crystals on the concentration of SmF_3 in the original crystals.

at 161.0, 175.4, 206.0 nm, respectively. The bands belong to hydrogen H⁻*a*-centres [9,10]. The formation of hydrogen centres is also confirmed by the appearance of the EPR signal of interstitial hydrogen atoms after X-ray irradiation of additively coloured crystals [10] and by infrared vibronic absorption bands near 794, 884, 957 cm⁻¹ in BaF₂, SrF₂, CaF₂ respectively.

Additive coloration is due to the "dissolution" of metal atoms - the

Download English Version:

https://daneshyari.com/en/article/8943169

Download Persian Version:

https://daneshyari.com/article/8943169

Daneshyari.com