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A B S T R A C T

In this paper we discuss the various models that have been used to predict whether a material will tend to be
ductile or brittle. The most widely used is the Pugh ratio, G K/ , but we also examine the Cauchy pressure as
defined by Pettifor, a combined criterion proposed by Niu, the Rice and Thomson model, the Rice model, and the
Zhou-Carlsson-Thomson model. We argue that no simple model that works on the basis of simple relations of
bulk polycrystalline properties can represent the failure mode of different materials, particularly where geo-
metric effects occur, such as small sample sizes. Instead the processes of flow and fracture must be considered in
detail for each material structure, in particular the effects of crystal structure on these processes.

1. Elastic ductility criteria

1.1. The Pugh ratio

Many models exist that try to predict the plastic behaviour of ma-
terials. By far the most widely used, no doubt due to the ease with
which elastic constants can be measured or calculated by density
functional theory, is that of Pugh [1].

The Pugh ratio, G K/ where K is the bulk modulus and G is the shear
modulus, represents the competition between two processes, plasticity
and fracture. If plasticity is easier then a material will tend to be ductile,
whereas if fracture is easier then a material will tend to be brittle.

Pugh assumed that the yield stress, i.e. a measure of the difficulty of
plastic deformation, scales with the shear modulus, as the Orowan
bowing [1] stress is:

=σ Gb
λy (1)

where σy is the yield stress, G is the shear modulus, b is the Burgers
vector, and λ is the size of the Frank-Read source [2]. Pugh assumed
that λ does not vary between metals, i.e. any work hardening can be
neglected. Pugh associated this with the Brinell hardness number:

=B H N Gb
c

. . .
(2)

where B H N. . . is the Brinell hardness number and c is a constant for a
particular crystal structure, which is not explicitly defined by Pugh, but
presumably relates to available slip systems and average Schmid fac-
tors.

The fracture stress of a material can also be linked to elastic

constants. Pugh noted that fracture stress scales with the Young mod-
ulus, E [3], and that the surface energy of a material, to which some of
the work of fracture must be converted [4], was shown to correlate with
E by Elliott [5]; however Pugh neglects the fact that during the fracture
of ductile materials such as aluminium, the energy dissipated by dis-
locations is much larger than the surface energy. The surface energy,
and therefore the stiffness, only has a small influence on the fracture
stress of ductile materials.

Pugh suggested that the particular constraints on strain state at the
crack tip will cause the relevant elastic modulus to vary between two
limiting cases: the Young modulus, E, and the bulk modulus, K. Since
these constants generally scale together, Pugh used the bulk modulus
for convenience, and took the fracture stress to obey:

∝∗σ Ka (3)

where a is a lattice parameter.
If this is true, then the ratio of the yield stress, as characterised by

the Brinell hardness, and the fracture stress will follow the expression:

∝
∗
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(4)

As noted by Pugh the crystal structure will affect this criterion,
however these are usually neglected to enable easy comparison of
materials. If the effects of crystal structure are neglected, b ac/ is con-
stant, the relative difficulty of plastic flow and fracture is represented
by:

∝
∗
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K

. . . .
(5)

Hence the ratio G K/ provides a measure of the likely nature of a
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material’s failure: a high value of G K/ implies brittle failure, while a
low value implies ductile failure. This assumes that the changes in
crystal structure affect both processes to the same degree.

Thermal effects were neglected for metals like iron, for which the
homologous temperature is low at room temperature (∼0.16 for iron).
However, it is well documented that the yield stress of iron falls by
almost three orders of magnitude between absolute zero and room
temperature [6,7] due to the thermally activated nature of the lattice
resistance. This is much greater than the change in the shear modulus,
which falls by just over 5% over the same temperature range [8].

Pugh collated a large amount experimental data to support his ideas
[9–11]. The yield stress was estimated from the Brinell hardness across
a large range of metals with body- and face-centred cubic, and hex-
agonal crystal structures. The data presented are generally consistent,
though there are discrepancies, notably Ca, Pt, Be, and, perhaps sur-
prisingly given its isotropy, W. These discrepancies are associated with
twinning [1] or solute drag [12,13].

The Brinell hardness number is measured using a spherical indenter.
This has the complication that the indents are not necessarily self-si-
milar. The hardness therefore depends on the load, W and the diameter
of the ball, D, and is given by [9]:

=
− −

B H N W
πD d D

. . . 2
[1 1 ( / ) ]2 2 (6)

where d is the diameter of the indent.
The Brinell hardness number of two indents, in the same material,

will be the same if the indents are geometrically similar, i.e. if d D/ is
constant. However there is no indication in Pugh’s sources [9–11] that
the quoted values were obtained under this condition, so that the ex-
perimental support for this idea cannot be conclusive.

This criterion is also often justified by considering the properties of
the f.c.c. metals [14]. As shown in Fig. 1, soft ductile metals, such as Au
and Ag have low values of G K/ , while more brittle metals, particularly
Ir, have high values of G K/ . However despite the fact that Ir is often
considered brittle, plastic flow occurs before fracture [15], and the
failure mode is strongly dependent on grain boundary properties, par-
ticularly impurity levels [16].

1.2. Cauchy pressure

As metals tend to be more ductile than non-metals, another possible
criterion is the Cauchy pressure, as discussed by Pettifor [17]. The
Cauchy pressure is defined, in terms of the single crystal elastic con-
stants of a cubic material, as −C C12 44, and can be used to describe the
nature of the bonding in a material. A material with a high resistance to
bond bending, such as a covalently bonded solid, will have a negative
Cauchy pressure, i.e. >C C44 12. In contrast materials with metallic
bonding exhibit a positive Cauchy pressure.

It is worth noting that Pettifor states this is a metric for the nature of
bonding and appeals to the Pugh ratio when commenting on ductility. It
seems likely that the use of the Cauchy pressure as a ductility criterion
[18–20] is due to its relative ease of calculation with density functional
theory, as with the Pugh ratio. A positive Cauchy pressure is considered
to indicate ductile behaviour, while a negative pressure implies brittle
behaviour.

Niu et al. [18] have shown that one can draw lines where Pettifor’s
criterion, that the Cauchy pressure should be greater than zero, inter-
sects that of Pugh’s criterion at =G K/ 0.571. This is close to the critical
value of 0.6, suggested by Gilman [14]. Pugh, himself, does not actually
give a critical value for the ratio dividing brittle from ductile materials,
although he does state that he expects the transition to be sharp.

It was found that materials followed a broadly hyperbolic trend
when the Pugh ratio was plotted against the Cauchy pressure, nor-
malised by the Young modulus [18]. This is plotted for some of the
f.c.c. metals and some of the cubic Laves phases in Fig. 1. The Laves
phases are describing a different hyperbola to f.c.c. metals, one that is
generally lower in G K/ . Without a theoretical underpinning it is not
clear what significance can be attached to this trend.

The low values of G K/ and high positive values of the Cauchy
pressure in some Laves phases do not correspond to ductile behaviour.
While dislocation motion has been observed in micropillars of the Laves
phases [34], these phases are brittle [35]. For example the Laves phase
NbCr2 has a Pugh ratio of 0.28 and a normalised Cauchy pressure of
0.56. These values both lie between those of copper and gold, but ex-
perimentally the fracture toughness of NbCr2 is found to be around
1.5MPa m to 2MPa m [24,36], which is clearly brittle. This is
comparable with ceramics such as borosilicate glass, which have a
toughness of about 1.5MPa m [37], and lower than alumina, for
which the toughness is approximately 3.5MPa m [38].

In this case, the change of crystal structure has violated an as-
sumption of the Pugh model. The crystal structure has made the Laves
phases brittle by increasing the difficulty of plastic flow, i.e. the yield
stress, without a corresponding increase in the difficulty of fracture,
i.e. the fracture stress. Since this is an effect of the crystal structure, it
cannot be captured by the ratio of elastic constants alone.

Another effect that is often overlooked is that of geometry. In par-
ticular the effect of size is known to be significant. For instance, in small
micropillars cracking is suppressed and even very brittle materials, such
as silicon, will plastically deform [39–41]. The size effect is also sig-
nificant in indentation where the hardness is known to increase mark-
edly as indent depths become small [42]. As the elastic properties are
unchanged, criteria such as the Pugh ratio or the Cauchy pressure
cannot account for these phenomena.

At best the Pugh ratio might provide a general indication of beha-
viour across materials with the same or similar crystal structure and
deformation mode. Other changes in the balance between the com-
peting processes could prevent even that; for example a change in the
nature of dislocations, such as dissociation into partial dislocations.
This would not change G K/ but would alter the yield stress of the
material with no corresponding change in the difficulty of fracture.
Certainly the Pugh model and Cauchy pressure cannot provide a basis
for the prediction of the behaviour of novel materials.
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Fig. 1. The variation of two ductility criteria, that of Niu et al. [18] and Pugh
[1], for the f.c.c. metals and the C15 Laves phases. As can be seen the Laves
phases cover a similar range of values for both the criteria and overall fall on
the ductile side of the f.c.c. metals. Data from [14,21–33].

R.P. Thompson, W.J. Clegg Current Opinion in Solid State & Materials Science xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/8943208

Download Persian Version:

https://daneshyari.com/article/8943208

Daneshyari.com

https://daneshyari.com/en/article/8943208
https://daneshyari.com/article/8943208
https://daneshyari.com

