Accepted Manuscript

Magnetic x-ray spectroscopy of two-dimensional CrI₃ layers

Andreas Frisk, Liam B. Duffy, Shilei Zhang, Gerrit van der Laan, Thorsten Hesjedal

PII: S0167-577X(18)31189-3

DOI: https://doi.org/10.1016/j.matlet.2018.08.005

Reference: MLBLUE 24716

To appear in: Materials Letters

Please cite this article as: A. Frisk, L.B. Duffy, S. Zhang, G. van der Laan, T. Hesjedal, Magnetic x-ray spectroscopy of two-dimensional CrI₃ layers, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.08.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Magnetic x-ray spectroscopy of two-dimensional CrI₃ layers

Andreas Frisk^a, Liam B. Duffy^{b,c}, Shilei Zhang^c, Gerrit van der Laan^a, Thorsten Hesjedal^{c,*}

^aMagnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE, United Kingdom

^bISIS, STFC, Rutherford Appleton Lab, Didcot, OX11 0QX, United Kingdom
^cDepartment of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU,
United Kingdom

Abstract

The recently confirmed monolayer ferromagnet CrI_3 is a frisky example of a twodimensional ferromagnetic material with great application potential in van der Waals heterostructures. Here we present a soft x-ray absorption spectroscopy study of the magnetic bulk properties of CrI_3 , giving insight into the magnetic coupling scenario which is relevant for understanding its thickness-dependent magnetic properties. The experimental $Cr\ L_{2,3}$ x-ray magnetic circular dichroism spectra show a good agreement with calculated spectra for a hybridized ground state. In this high-spin Cr ground state the Cr-I bonds show a strongly covalent character. This is responsible for the strong superexchange interaction and increased spin-orbit coupling, resulting in the large magnetic anisotropy of the two-dimensionally layered CrI_3 crystal.

Keywords: Magnetic materials, Spectroscopy, X-ray techniques

1. Introduction

CrI₃ belongs to the family of van der Waals materials [1] that is characterized by stacked two-dimensional (2D) layers which are weakly bonded together

Email address: Thorsten.Hesjedal@physics.ox.ac.uk (Thorsten Hesjedal)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/8943386

Download Persian Version:

https://daneshyari.com/article/8943386

<u>Daneshyari.com</u>