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We investigate the entanglement and nonlocality properties of two random XX spin-1/2 critical chains, 
in order to better understand the role of breaking translational invariance to achieve nonlocal states 
in critical systems. We show that breaking translational invariance is a necessary but not sufficient 
condition for nonlocality, as the random chains remain in a local ground state up to a small degree 
of randomness. Furthermore, we demonstrate that the random dimer model does not have the same 
nonlocality properties of the translationally invariant chain, even though they share the same universality 
class for a certain range of randomness.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The use of quantum information tools in condensed matter 
systems has become widespread, mostly because of their useful-
ness for a better understanding of the behavior of quantum critical 
ground states (for a review, see Ref. [1]). Currently, entanglement 
and nonlocality measurements are under intensive scrutiny since 
they have shown to be able to signal quantum phase transitions1

(QPTs) in many-body systems [2–10]. Even though these concepts 
are frequently associated with each other, it has been shown that 
they are indeed distinct by the construction of entangled mixed 
states which do not violate Bell-like inequalities2 [11]. In addition, 
finding nonlocal states in many-body systems is of major inter-
est, bearing in mind the many interesting applications of nonlocal 
states, such as to cryptography [12] and to the generation of ran-
dom numbers [13].

Although it was observed that nonlocality measures may point 
out QPTs, it is far from clear what is the relation between nonlo-
cality and QPTs. For instance, a recent study [14] has shown that 
due to monogamy and translational invariance, any mixed state of 

E-mail address: getelina@ifsc.usp.br (J.C. Getelina).
1 This is understood as a consequence of entanglement and nonlocality (as well 

as discord) inheriting the nonanalytic behavior at the critical point from the usual 
spin-spin correlation functions.

2 When we refer to Bell inequalities or Bell-like inequalities we have in mind the 
original Bell inequality and the CHSH inequality (see Sec. 3).

a spin pair of the critical XXZ spin-1/2 chain is a local state, i.e., 
any spin pair does not violate the Bell inequality (even though they 
can be in an entangled mixed state). This conclusion led us to in-
quire whether, generically, a critical state is always local.

Therefore, we consider here two different spin-1/2 chains with 
randomly generated coupling constants. By introducing random-
ness, we are able to break translational invariance without driving 
the system out of criticality. In one these random models, the crit-
ical state belongs to the so-called infinite-randomness universality 
class [15]. In this case, when the degree of inhomogeneities is very 
large, there are spin pairs in nearly Bell-like (singlet) states [16]
which become strong candidates to violate the Bell inequality. In 
the other model, the corresponding universality class is of finite-
disorder type. It was shown that the corresponding ground state 
has many similarities with the one of the translationally invariant 
case, such as sharing the same set of critical exponets (i.e., be-
longing to the same universality class) below a certain degree of 
randomness [17,18]. It is then much less clear whether the Bell 
inequality is violated or not.

We have shown here that the Bell inequality is violated in 
both cases, if the degree of randomness is greater than a certain 
amount (which we have determined). Moreover, for the case in 
the infinite-randomness universality class, the spin pairs violating 
the Bell inequality can be widely separated, while for the finite-
disorder case only nearest-neighbor spin pairs may be in nonlocal 
states. The most striking result is that the second model exhibits 

https://doi.org/10.1016/j.physleta.2018.08.003
0375-9601/© 2018 Elsevier B.V. All rights reserved.
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nonlocality even when it belongs to the same universality class of 
the translationally invariant case (which was shown to be local).

The remainder of this paper is structured as follows: in Sec. 2
we present our random models, emphasizing the differences be-
tween them. In Sec. 3 we define and describe how to obtain the 
entanglement and nonlocality measurements. Sec. 4 presents our 
numerical results, which are further discussed in Sec. 5 and fol-
lowed by perspectives of future studies and applications.

2. The random uncorrelated and correlated XX spin-1/2 models

Here, we introduce the two studied models, which are special 
cases of the disordered XXZ spin-1/2 chain [19,20]. This model is 
described by the Hamiltonian

H =
L∑

i=1

J i
(

Sx
i Sx

i+1 + S y
i S y

i+1 + �i S z
i Sz

i+1

)
, (1)

where Sα
i are the usual spin-1/2 operators, J i > 0 are the coupling 

constants, �i are the anisotropy parameters and L is the chain size 
which we will assume to be even. In addition, we will consider 
periodic boundary conditions: Si+L = Si .

In the translationally symmetric case ( J i = J and �i = �) the 
system is critical for −1 ≤ � ≤ 1 and it is described as an exotic 
Tomonoga-Luttinger spin liquid state [21], which is a highly entan-
gled [1] but local state, i.e., any spin pair does not violate the Bell 
inequality [3,14].

Conversely, in the uncorrelated random case ( J i and �i being 
uncorrelated and identically distributed random variables) the sys-
tem is described as a critical random singlet state for −1/2 <
�i ≤ 1 [15,22] in which spin pairs can be highly entangled in 
nearly singlet states [16,23–25], as depicted in Fig. 1. Remarkably, 
it was shown that this state is universal, in the sense that all of 
its low-energy critical properties do not depend on (i) the details 
of the random variables, provided that the width of their distribu-
tion is not zero and not unphysically large, and on (ii) the system 
anisotropy, provided that −1/2 < �i ≤ 1.

For this reason, we here restrict our study to the case known as 
the XX model, in which �i = 0, ∀ i. Another reason for our choice 
is due to the existence of a mapping between the XX chain and the 
tight-biding model of free spinless fermions [26], which allows us 
to study considerably large chains via the exact diagonalization of 
the Hamiltonian (1). Finally, it is plausible that our conclusions for 
the XX model also extend to the XXZ model in the critical random-
singlet region −1/2 < �i ≤ 1 because, in this region, the ground 
state of the random XXZ chain depends very weakly on the values 
of the local anisotropies �i , thus exhibiting the symmetry proper-
ties of the SU(2) symmetric Heisenberg model �i = 1 [27].

In our study, we draw the random couplings from a power-law 
like probability density distribution

P ( J ) = D−1 J
1
D −1, (2)

where 0 < J < 1. Here, D ≥ 0 parameterizes the disorder strength, 
with D = 0 recovering the translationally invariant case. The prob-
ability distribution (2) is a natural choice as it allows us to assess a 
wide range of disorder strength by varying the parameter D . More-
over, this probability distribution also coincides with the one of the 
infinite-randomness fixed point, which governs the critical behav-
ior of the system [15]. Nonetheless, for the sake of completeness, 
we have also considered the case of box-like distributions, i.e.,

P ( J ) =
{

1, for Jmin < J < 1

0, otherwise
(3)

In this case, Jmin parameterizes the disorder strength, with smaller 
Jmin meaning stronger disorder.

Fig. 1. Representation of the random singlet state where the red dots are the spins 
in a regular lattice and the black curves connect spin pairs in nearly singlet states. 
(For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

We now introduce our second model: the random correlated 
XX spin-1/2 chain. The difference with respect to our first model 
is that instead of considering an uncorrelated sequence of ran-
dom couplings { J1, J2, . . . , J L}, we consider the special sequence 
of couplings { J1, J1, J2, J2, . . . , J L/2, J L/2}. Our interest in this 
special model is because it was recently shown that short-range 
correlations among the random exchange couplings J i (e.g., the 
one we are considering here, J2i = J2i−1) can dramatically change 
the low-energy properties of the XX spin-1/2 chain [17,18,28]. For 
instance, the ground state of the random correlated model is com-
pletely unrelated to the random-singlet state of the uncorrelated 
one; in fact, it even shares many similarities with the ground state 
of the translationally invariant case. For 0 ≤ D ≤ Dc, the ground-
state bipartite (block) entanglement and the low-energy thermo-
dynamics are practically identical to those of the translationally 
invariant system [18]. Only for D > Dc ≈ 0.3 these quantities be-
come distinct with, surprisingly, the (block) entanglement entropy 
increasing with the disorder strength D (and being greater than 
that of the translationally invariant) [17].

3. Entanglement and Violation of Bell Inequality

In the strong-disorder limit (D � 1), it is a good approxima-
tion to describe the ground state of (1) (with uncorrelated random 
couplings) by the random-singlet state (see Fig. 1): a collection of 
independent singlets. We now would like to test this approxima-
tion by measuring how far two spins i and j are from the actual 
singlet state |�−〉 = (| +−〉 −| −+〉)/√2. For this reason, we study 
the so-called fidelity, which is given by

Fij = 〈
�−|ρi j|�−〉

, (4)

where ρi j is the ground-state reduce density matrix encoding all 
the information about the physical state of the two spins i and 
j. Using the symmetries of the XX spin-1/2 chain Hamiltonian, 
one can related the fidelity to the ground-state transverse C xx

i j and 
longitudinal C zz

i j spin-spin correlation functions [16]:

Fij = 1

4
− 2C xx

i j − C zz
i j , (5)

where Cαα
i j = 〈Sα

i Sα
j 〉 = Tr(ρi j Sα

i Sα
j ). More importantly, the fidelity 

is related to the concurrence Ci j (a bona fide entanglement mea-
surement [29–31]) via

Ci j =
{

0, if Fij ≤ 1/2,

2Fij − 1, if Fij > 1/2.
(6)

Thus, for this model, the fidelity can be used as a entanglement 
measurement since it is monotonically related to the concurrence, 
with

Fij > 1/2 (7)

meaning that the two spins are entangled.
In addition to the entanglement, we also want to verify if the 

two-spins physical state is nonlocal by violating the Bell inequality 
Bi j ≤ 2 [32,33], where the Bell measurement for our model Hamil-
tonian is simply [3]



Download English Version:

https://daneshyari.com/en/article/8943640

Download Persian Version:

https://daneshyari.com/article/8943640

Daneshyari.com

https://daneshyari.com/en/article/8943640
https://daneshyari.com/article/8943640
https://daneshyari.com

