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Effects of electron–electron interaction on the collinear indirect 
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Using the Hubbard model in the framework of the tight-bonding formulation, we studied the effects of 
the electron–electron (e–e) interaction on the indirect magnetic exchange coupling between the magnetic 
impurities embedded in triangular graphene nanoflakes. The results show that the magnitude of the 
coupling enhances in the presence of the e–e interaction and Rashba spin–orbit interaction (RSOI). The 
RKKY coupling magnitude depends on the impurity positions in nanoflake and the size of the system, as 
well.

© 2018 Published by Elsevier B.V.

1. Introduction

Carbon-based magnetic nanomaterials attracted particular at-
tention, mainly due to their tuneable electronic structure which 
is dependent on its geometry, especially the edge form [1]. These 
nanostructures are suitable candidates for technological applica-
tions such as q-bits in quantum computers and spintronics. In 
general, there is not any symmetry between spin down and spin 
up states in magnetic materials. The polarized spins can be con-
sidered for spintronic purposes [2].

The graphene nanoflakes show peculiar magnetic behavior due 
to the existence of surface and edge effects, which is different from 
bulk graphite behavior [3,4]. The shape of the graphene nanoflake 
(triangular, rectangular, or hexagonal) has a strong influence on its 
structural, electronic, vibrational properties when the number of 
carbon atoms is small (< 100) [5]. Among allotropes of graphene, 
zigzag-edged triangular nanoflakes have peculiar electronic spec-
trum, containing a shell of degenerate zero-energy states at the 
Fermi energy [6,7]. The important role of electronic correlations 
and magnetization in triangular graphene quantum dots has been 
investigated by a combination of tight-binding, Hartree–Fock, and 
configuration interaction methods. It was shown that electronic 
correlations play a crucial role in fractionally filled degenerate 
shells at the Fermi level for graphene quantum dots [8]. Also, the-

* Corresponding author.
E-mail address: eb.heidari@gmail.com (E. Heidari-Semiromi).

oretical calculations show that in the presence of e–e interactions 
the single zigzag edge of graphene nanoribbons leads to a shell of 
degenerate states at the Fermi level [9]. These results can be uti-
lized to design a strongly correlated electronic system as a function 
of fractional filling of the shell in the carbon-based material whose 
magnetic properties can be controlled by applied gate voltage [8]. 
Interactions between magnetic moments introduced to graphene 
lattice attract considerable attention. One of the most important 
magnetic properties is the effective interaction between magnetic 
moments embedded in the host material, the so-called Ruderman–
Kittel–Kasuya–Yosida (RKKY) coupling [10–12]. This well-known 
coupling has the considerable impact on the magnetic order of 
the impurities and also can be useful to determine the intrinsic 
magnetic properties of the host [13]. The possibility of introduc-
ing magnetic impurity atoms such as Mn, Fe and Co to graphene 
surface has been investigated using density functional theory [14]. 
In particular, the coupling in nanoflakes is different from the infi-
nite system, as the dominance of the edge in a nanoflake mod-
ifies the indirect coupling and breaks the translational symme-
try. So far, the significant efforts have been performed on the 
calculations of RKKY coupling properties in nanosized graphene 
structures. Namely, the effects of e–e interaction on the RKKY 
coupling have been studied in the zigzag graphene nanoribbons 
where the zero-energy states localized at the zigzag edges signifi-
cantly modify the coupling behavior [13]. However, various inves-
tigations are made for the appearance of magnetism in graphene 
nanostructures without introduced magnetic impurities [15]. On 
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the other hand, the main efforts have focused on the calculations 
of RKKY coupling properties in the graphene nanostructures with 
introduced magnetic impurities [16–18]. Also, the effects of e–e 
interaction and charge doping on the RKKY coupling in the ab-
sence of Rashba interaction have been studied in the graphene 
nanoflakes in the framework of the Hubbard model [19]. Recently 
also, the importance of RSOI in the RKKY coupling between two 
embedded magnetic impurities has been investigated in zig-zag 
graphene nanoflakes without e–e interaction. However, the results 
show that magnetic phase transition (from F to AF magnetic or 
vice versa) does not occur in such a system through the RSOI [20]. 
The anisotropic contribution of the indirect exchange interaction 
in the presence of both Hubbard and Rashba type interactions has 
not been studied yet.

We incorporate the Hubbard and Rashba terms in order to 
investigate the effects of e–e interaction in the framework of 
the Hubbard model on the collinear indirect exchange coupling 
between the magnetic impurities for the various sizes of the 
graphene nanoflakes. We solve mean-field Hamiltonian selfcon-
sistently using exact diagonalization. In the presence of both 
Rashba and e–e interactions, the SU (2) symmetry breaking leads 
to emerging different contributions such as collinear and non-
collinear terms in the RKKY amplitude. In this work, our attention 
is mainly on the dependence of the collinear term on the e–e in-
teraction and RSOI strengths for various sizes of the system. Also, 
the dependence of the indirect coupling on the positions of the 
magnetic impurities which are located in on-site and plaquette lo-
cations at the edge of the nanoflake was investigated. We conclude 
that the e–e interaction influences on the magnitude of an indirect 
interaction in the presence of the RSOI. For a fixed position of 
the magnetic impurities, the coupling character does not change 
from F to AF magnetic or vice versa in the presence of the Hub-
bard and Rashba terms. Recently, the efforts have been focused on 
the problem of the indirect exchange coupling between magnetic 
impurity spins in graphene mediated by charge carriers. The ob-
tained results for triangular nanoflakes demonstrate that doping of 
the nanoflake with a single charge carrier in presence of the Hub-
bard term leads to changing sign of the coupling from an AF to F 
magnetic for some geometries [19].

2. Model and Hamiltonian

We consider a triangular graphene nanoflake with the zigzag 
edge in which two magnetic impurities are embedded in on-site 
or plaquette positions. The total Hamiltonian for the graphene 
nanoflake can be written as:

H = H0 + H R + H ′ + Himp . (1)

Here, H0 is the nearest-neighbor tight-binding Hamiltonian, with 
hopping integral t (usually taken as 2.8 eV) [21]:

H0 = −t
∑

<i, j>,σ

(c†
i,σ c j,σ + c†

j,σ ci,σ ), (2)

where < i, j > denotes that the summation is taken over all the 
pairs of nearest-neighbor atoms. Here, c†

i,σ and c j,σ are creation 
and annihilation field operators of electrons at the nearest-neigh-
bor sites i and j in the nanoflake, while σ =↑, ↓ is the electron 
spin.

H R is the Rashba Hamiltonian that is given by [22]:

H R = iα

a

∑

<i, j>

∑

σ=↑,↓
c†

i,σ [σ × dij]zc j,σ , (3)

where α is the Rashba strength, a is the carbon–carbon bond 
length, di, j is the displacement vector between the nearest-
neighbor sites from j to i, and σ is the Pauli matrix.

Also, the effects of the e–e interaction are described using the 
Hubbard term, in which a mean-field approximation in a self-
consistent way is applied [15]:

H ′ = U
∑

i

(ni↑ < ni↓ > + < ni↑ > ni↓) − U
∑

i

< ni↑ >< ni↓ >,

(4)

where niσ = c†
iσ ciσ is the electron number operator at site i; the 

effective parameter U > 0 defines the Hubbard on-site repulsion. 
In this expression, < ni↑> (< ni↓>) is the electron density of the 
number operator for an electron with spin-up (spin-down) which 
is calculated by a self-consistent solution. The values of the elec-
tron density are determined by iteration, starting from the initial 
guess of < niσ > which can be chosen randomly. The Hubbard 
term appears only in the diagonal elements of the Hamiltonian 
matrix.

In equation (1), Himp describes interaction between the mag-
netic impurity spins (Sa and Sb) and spins of the conduction elec-
trons (sa and sb), the so-called Anderson–Kondo term [1]:

Himp = J0

2
(Sa.sa + Sb.sb), (5)

where J0 is the constant potential showing coupling between on-
site impurity spins Sa and Sb and the electron spins (sa and sb) at 
the same sites. In all the results the value of J0/t = 0.1 was ac-
cepted. The selected value of J0/t is based on the calculations (by 
first principle approach) of strength of the hybridization between 
atomic orbitals of the magnetic impurities in one hand and 2pz

orbital of the carbon at the other hand.
The operator of the spin of the electron for both orientations σ

and σ ′ in the second-quantization representation can be written 
as:

sa =
∑

σ ,σ ′=↑,↓
< σ |sa|σ ′ > c†

a,σ ca,σ ′ . (6)

After the substitution the operator of the spin of the electron 
into the Eq. (5), the Anderson–Kondo interaction in the second-
quantization representation is achieved:

Himp = J0

2

∑

α=x,y,z

S(α)
a

∑

σ ,σ ′=↑,↓
< σ |s(α)

a |σ ′ > c†
a,σ ca,σ ′

+ J0

2

∑

α=x,y,z

S(α)

b

∑

σ ,σ ′=↑,↓
< σ |s(α)

b |σ ′ > c†
b,σ cb,σ ′ .

(7)

In the absence of spin-dependent interactions such as intrinsic or 
Rashba spin–orbit interactions, the system under consideration is 
rotational-invariant in spin vector space. In this situation, the RKKY 
interaction has only the collinear contributions such as Heisenberg 
or Ising types. In other words, the tensor of the RKKY interac-
tion is diagonal, and the off-diagonal elements of this tensor which 
are related to the noncollinear contributions are zero. The SU (2)

symmetry in the spin vector space is broken by considering the 
intrinsic or Rashba type spin–orbit interactions. Therefore, the con-
tributions which are related to the diagonal elements of the tensor 
such as Ising and Heisenberg would change. Moreover, the contri-
butions of the off-diagonal elements of the tensor would appear. 
If all of the diagonal elements of the tensor are equal, we have 
Isotropic Heisenberg indirect exchange. If only the first component 
of the tensor, Sx Sx , is none zero, we have the Ising exchange inter-
action in the x direction. Otherwise, if the two components of the 
tensor are none zero, then 2D Ising exchange interaction appears 
in the x and y directions.
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