ARTICLE IN PRESS

Mycoscience xxx (2018) 1-6

Contents lists available at ScienceDirect

Mycoscience

journal homepage: www.elsevier.com/locate/myc

Short communication

Relationship between saccharifying capacity and isolation sources for strains of the *Rhizopus arrhizus* complex

Ling-Dan Yao ^{a, b}, Xiao Ju ^b, Timothy Y. James ^c, Jun-Zhi Qiu ^a, Xiao-Yong Liu ^{b, *}

^a Fujian Agriculture and Forestry University, College of Life Science, Fuzhou, Fujian 350002, China

^b State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

^c Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA

ARTICLE INFO

Article history: Received 4 September 2017 Received in revised form 26 February 2018 Accepted 27 February 2018 Available online xxx

Keywords: Amylase Glucoamylase Mucorales Rhizopus delemar Rhizopus oryzae

ABSTRACT

To discover the differences and modes of saccharifying ability among *Rhizopus arrhizus* strains isolated from various habitats, we grew strains in glutinous rice media to monitor the production of glucose from starch using spectrophotometry at regular time intervals. The saccharifying capacity of *R. arrhizus* var. *delemar* was found to be weaker than that of var. *arrhizus* and var. *tonkinensis*. These data provide additional phenotypic support for recognization of this genetically distinct lineage (var. *delemar*) as a separate species. Clinical isolates were generally low in saccharifying abilities, while all strains from southwest China had an excellent diastatic power.

© 2018 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

Rhizopus arrhizus (synonymous with the more commonly used name R. oryzae) has three varieties, namely var. arrhizus, var. delemar and var. tonkinensis (Zheng, Chen, Huang, & Liu, 2007). Abe and others, however, considered R. arrhizus var. delemar to be the independent species R. delemar (Abe, Oda, Asano, Asano, & Sone, 2007, 2010). These three taxa are closely related in morphology and molecular phylogeny, and examination of many features is required for effectively distinguishing them (Liou et al., 2007; Liu, Huang, & Zheng, 2007, 2008). They also have a lot of similarities in ecological characteristics and industrial applications. The species complex is widely distributed in soil, dung, decomposing mushrooms, flowers, leaves, air, and so on and may occasionally arise as an opportunistic pathogen of humans. In daily cuisine, they are usually used to ferment foods such as grains, fruits, and legumes (Hu, Li, Li, & Gu, 2008; Igor, Ramón, & Igor, 2015); Among these, tempeh made from soybean in Indonesia and Malaysia may be the most well-known production (Dinesh Babu, Bhakyaraj, & Vildhyalakshmi, 2009). They can also produce fumaric acid (Peng et al., 2016; Wang, 2014; Ying, Jia, Yang, & Wan, 2015) and malic acid (He, Li, Fu, Xu, & Huang, 2008; Liu et al., 2015) on an industrial scale. Lipase (Vipin, Sebastian, Muraleedharan, & Santhiagu, 2016;

Yi, Zhao, Gong, Wang, & Tan, 2013; Ying, Fu, Xu, & Tan, 2002) and other enzymes with applications for the food industry produced by the species complex have been studied.

6

However, the driving characteristic behind the dominant utilization of *R. arrhizus* is its production of amylase and glucoamylase that can decompose starch into glucose (He et al., 2014; Zhou, 2016) and produce flavoring substances such as lactic acid (Ge, Pan, Zhang, Cai, & Yu, 2013; Li, Zhang, Ren, Wang, & Zhang, 2015; Ming, Yu, Xiao, Yang, & Xiong, 2013) and higher alcohols (Yang & Tang, 2016; Zeng, Zhan, & Wu, 2012), which makes them very useful in the primary fermentation of rice wine (Cai, Yi, Cheng, & Wu, 2010; Hao et al., 2010; Zheng, Zhou, Tan, & Yao, 2015). However, the mixed microbial starter used in traditional Chinese liquor production may cause control issues and problems with reproducibility. For example, long production cycles and complicated ingredients often yield harmful substances such as fusel alcohols and fungal toxins. In recent years, pure fermentation has been widely considered, because it can better control the quality of production, ensure food security (Su, Jie, Xu, & Mu, 2013; Tang, Liu, & Xiao, 2016; Yang et al., 2015; Zhao, Yang, Ma, Ling, & Ling, 2014) and the production process can be automated. Saccharifying capacity is one of the most important factors for considering the value of a microorganism for pure fermentation. In this study, pure R. arrhizus from various parts of Asia was selected for investigation

https://doi.org/10.1016/i.mvc.2018.02.011

E-mail address: liuxiaoyong@im.ac.cn (X.-Y. Liu).

Corresponding author.

1340-3540/© 2018 The Mycological Society of Japan. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: Yao, L.-D., et al., Relationship between saccharifying capacity and isolation sources for strains of the *Rhizopus* arrhizus complex, Mycoscience (2018), https://doi.org/10.1016/j.myc.2018.02.011

ARTICLE IN PRESS

of differences in saccharifying capacity, as well as possible genetic or environmental factors that may predict these differences. Ultimately, high quality strains for pure production practice may be chosen using the strategy we outline in the present study.

Thirty-four strains of *R. arrhizus* were utilized (Table 1). These cultures are from China, Japan, India and Indonesia, and their substrates include air, soil, mud, dung, flour, cake, candy wrapping, grass, stem, flowers, fruit, shells, rice fermentation starter, human skin and eyes. These strains were preserved in the State Key Laboratory of Mycology (R- or XY) and the China General Microbial Culture Collection, Institute of Microbiology, Chinese Academy of Sciences (CGMCC), or in the Biological Resource Center, National Institute of Technology and Evaluation, Japan (NBRC).

For preparation of glutinous rice media, polished glutinous rice (50 g) and 80 mL of distilled water were added into a 250 mL flask, covered with aluminum foil and heated in a water bath for 20 min on an induction cooker (C21-SDHC04, Zhejiang Supor Life Electric Co., Ltd.). After that, the flask was autoclaved under 1×10^5 Pa for 30 min (YXQ-LS-50A vertical high pressure steam sterilization pot, Shanghai Bo News).

Rhizopus arrhizus was cultivated on PDA (200 g potato, 20 g glucose, 20 g agar, 1 L distilled water) at 30 °C for 15 d. Hyphae, sporangiophores and sporangia were scraped from the surface of the culture with a surgical knife and transferred into a 50 mL centrifuge tube. Sterile distilled water (20 mL) was added and sporangiospores were released from sporangia by vigorously shaking. Then, the suspension was filtered through gauze to

dislodge hyphae and sporangiophores. Finally, the number of sporangiospores was counted with a blood cell counting chamber, calibrated to 6.25×10^6 sporangiospores/mL, and used for cultivation as soon as possible.

Calibrated sporangiospore suspensions (20 mL) in sterile distilled water were inoculated into the glutinous rice media and incubated at 30 °C and 130 r/min. Zymotic fluid (1 mL) was sampled for all strains every 12 h until 168 h. After that, 18 strains were sampled once again at 372 h; 6 strains were sampled three more times at 180 h, 192 h and 372 h; and 10 strains were sampled four more times at 180 h, 192 h, 204 h and 372 h. This later period of sampling with longer intervals was used to investigate strains that showed latent growth patterns. Each strain was represented by three replicate cultures. Each biological replicate was tested three times as technical replicates, providing nine estimates for each strain for each time point.

A set of glucose (D-Glucose A.R., Beijing Chemical Works) standards in sterile distilled water was created at the following final concentrations: 0 mg/mL, 0.18 mg/mL, 0.36 mg/mL, 0.54 mg/mL, and 0.72 mg/mL. Then, 0.1 mL of DNS solution (6.3 g 3,5-Dinitrosalicylic acid, 185 g seignette salt, 5 g phenol, 5 g NaSO₃, 262 mL of 2 M NaOH, 738 mL distilled water) was added to 3.2 mL of each glucose standard and boiled for 5 min. The OD value was recorded at 520 nm and consequently a standard curve was created.

DNS solution (0.1 mL) was added into 0.2 mL of zymotic fluid and boiled for 5 min. When cooled to room temperature, 3 mL of distilled water was added to make a final volume of 3.3 mL. The OD

Table 1

Maximum glucose concentrations of zymotic fluid with Rhizopus arrhizus.

Strain	CGMCC	Variety	Substrate	Sources ^b	Country	Province	MGC ^c (g/mL)	Peak ^c Time (h)	Capacity ^d	Speed ^e	Туре
R-027	3.9500	delemar	soil	W	China	Zhejiang	0.034	152	+	##	Ι
R-028	3.9501	arrhizus	flour	W	China	Hubei	0.034	160	+	##	I
R-029	3.9502	delemar	decaying flower	W	China	Beijing	0.034	96	+	##	Ι
R-030	3.9503	delemar	cake	W	China	Guangxi	0.034	144	+	##	Ι
R-141	3.9476	delemar	skin lesion	С	China	Shanghai	0.060	136	+	##	I
R-037	3.1136	delemar	air	W	China	Beijing	0.275	120	++	##	II
R-211	3.9493	delemar	skin lesion	С	China	Hebei	0.316	120	++	##	II
R-212	3.9531	arrhizus	eye socket	С	China	Beijing	0.416	120	++	##	II
R-720	3.15794	delemar	skinscab	С	China	Hebei	0.319	144	++	##	II
XY00406	3.4966	arrhizus	koji	D	Japan		0.234	128	++	##	II
XY00495	3.4995	delemar	distillery yeast	D	India		0.300	120	++	##	II
R-031	3.9504	delemar	mud	W	China	Guangxi	0.671	192	+++	##	III
R-032	3.15791	arrhizus	decaying fruit	W	China	Guangxi	0.683	192	+++	##	III
R-033	3.9505	delemar	decaying flower	W	China	Shanghai	0.909	136	+++	##	III
R-143	3.9477	arrhizus	soil	W	China	Gansu	0.685	156	+++	##	III
R-147	3.9478	arrhizus	decaying flower	W	China	Yunnan	0.925	144	+++	##	III
R-155	3.9516	arrhizus	decaying flower	W	China	Yunnan	1.084	180	+++	##	III
R-165	3.9518	arrhizus	decaying grass	W	China	Sichuan	1.075	136	+++	##	III
R-166	3.9483	delemar	candy wrapping	W	China	Guizhou	0.992	136	+++	##	III
R-171	3.9484	delemar	soil	W	China	Sichuan	0.746	132	+++	##	III
R-210	3.9492	arrhizus	decaying plant	W	China	Chongqing	1.114	168	+++	##	III
R-237	3.9495	arrhizus	Chinese yeast	D	China	Sichuan	1.026	160	+++	##	III
R-248	3.9510	arrhizus	distillery yeast	D	China	Guangdong	0.984	144	+++	##	III
R-324	3.9496	arrhizus	decaying stem	W	China	Zhejiang	0.687	192	+++	##	III
R-487	3.9533	arrhizus	decaying shell	W	China	Hebei	1.018	136	+++	##	III
XY00409	3.4967	tonkinensis	soil	W	Japan		0.681	192	+++	##	III
XY00410	5318 ^a	tonkinensis	soil	W	Japan		0.896	204	+++	##	III
R-152	3.9479	delemar	soil	W	China	Yunnan	0.748	372	+++	#	IV
R-156	3.9480	delemar	candy wrapping	W	China	Yunnan	0.839	372	+++	#	IV
R-167	3.9519	arrhizus	soil	W	China	Guizhou	1.134	372	+++	#	IV
R-420	3.15792	tonkinensis	candy wrapping	W	China	Jilin	0.902	372	+++	#	IV
R-431	3.15793	tonkinensis	soil	W	China	Jilin	0.975	372	+++	#	IV
R-495	3.9534	tonkinensis	dung	W	China	Tibet	0.734	372	+++	#	IV
XY00438	3.4976	tonkinensis	Chinese yeast	D	China	Zhejiang	0.918	372	+++	#	IV
a This stars		AN NIDDO 5210									

^a This strain is received as NBRC 5318.

^b C, clinical; D, domesticated; W, wild.

^c MGC (maximum glucose concentration) and peak time from Fig. 1.

 $^{\mathrm{d}}$ +, ++, and +++ represent weak, medium, and strong saccharifying capacity, respectively.

^e Strains reach MGC slowly (#) and fast (##).

Please cite this article in press as: Yao, L.-D., et al., Relationship between saccharifying capacity and isolation sources for strains of the *Rhizopus* arrhizus complex, Mycoscience (2018), https://doi.org/10.1016/j.myc.2018.02.011

Download English Version:

https://daneshyari.com/en/article/8943802

Download Persian Version:

https://daneshyari.com/article/8943802

Daneshyari.com