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a b s t r a c t

Infection transmission is a complex and dynamic process, and is therefore difficult to assess.
Consequently, mathematical models are a useful tool to understand any leverage on this transmission,
such as vaccination. Models can provide guidance to implement an optimal vaccination campaign
whether it concerns the fraction of the population or the age-group to be vaccinated. Mathematical mod-
els can also provide insights on counter-intuitive collateral effects of vaccination campaign, given the
possibility that the overall benefits for the general population may hide deleterious effects on some
sub-groups.
As a large proportion of the population is now vaccinated, complex modelling taking into account indi-

vidual and population heterogeneity and behaviour is necessary although challenging. But the most cru-
cial aspect in the future of mathematical modelling still consists in obtaining precise and exhaustive data.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The most important aspect driving the spread of an infection is
the transmission of the pathogen from infectious to susceptible
individuals. Infectious transmission is a dynamic process, influ-
enced among other things by the number of susceptible individu-
als, the infectious period, the infectiousness and the duration of
immunity resulting from the infection. The nonlinearity of infec-
tious transmission renders it difficult and non-intuitive to gauge.
Mathematical models are an efficient way, if not the only one, to
assess complex processes such as infection dynamics. Besides, they
provide useful and inexpensive tools to test hypotheses on the
optimal way to control the spread of an infection, notably through
vaccination. Although vaccines are not the only field of application
for mathematical modelling, it is worth remembering that the first
mathematical model of an infection was developed during the 18th

century by the physician and mathematician Daniel Bernoulli to
assess the potential impact of immunization with cowpox on the
life expectancy of immunized individuals [1].

A common interrogation about mathematical models concerns
their ability to be ‘‘right” or ‘‘true”. ‘‘Essentially, all models are
wrong, but some are useful” is the answer, stated by George
P. Box [2], and it is now a motto among modellers. A good

example of a ‘‘wrong but useful” model was developed to assess
the impact of travel restriction on the H1N1 pandemic influenza
strain. The model predicted that a <99% reduction in air travel
would, at best, delay epidemic spread by only 2–3 weeks. Such
reduction having never been implemented (the 9/11 terrorist
attack resulted only in reduction of US air traffic of less than 50%
for just a few days), the prediction is likely to be very approximate,
and consequently ‘‘wrong”. However, it is still extremely useful, as
it shows that restricting travel would never result in the 6-month
delay required to develop a new H1N1 vaccine [3].

With this warning in mind, we shall explain the basic tools used
in mathematical modelling of vaccines and infections, and then the
classic uses of these models. Finally, we shall comment on the
future challenges for mathematical modelling in the domain of
vaccines.

2. Tools and models

Daniel Bernoulli’s 18th century model on smallpox, refined by
Kermack and McKendrick in the 20th century, generated what is
now the most widely used category of models [4]. By attributing
conditions to members of a population, these models subdivide
this population into compartments such as Susceptible, Infected or
Recovered (for the simple SIR model), hence the expression: ‘‘Com-
partmental models” (Fig. 1).

The force of infection k, namely the per capita rate at which sus-
ceptible individuals become infected, results from the degree of
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contact with infected individuals in the population and the trans-
mission rate b (under the assumption of mass action principle
[5]). As long as the transmission rate b is superior to the removal
rate m, infected individuals are generated at a higher rate than that
at which they recover. This can be formally expressed as b/m, also
known as the basic reproduction number R0, which can also be
defined as the average number of secondarily infected individuals
resulting from introducing one infected individual into an entirely
susceptible population. Intuitively, if infected individuals recover
faster than susceptible individuals get infected, the epidemic will
die out; otherwise, it will grow. In other words, if R0 < 1, namely
if an infected individual ‘‘generates” less than one secondary case
on average, the epidemic will die out. Conversely, a R0 > 1 -an
infected individual generating more than one secondary case- is
required for an epidemic to grow. R0 is then specific to a pathogen
and does not depend on the environment. Conversely, the effective
reproduction number Re- namely the average number of secondar-
ily infected individuals resulting from introducing one infected
individual into a partly immune population- will vary according
to the population and its level of immunization (Supplementary
material). Fig. 2 shows how to build a basic compartmental model.
The different ways of including vaccination in such a model are
detailed in the supplementary material.

Stochasticity is implicitly taken into account in deterministic
compartmental models, particularly with large populations, as

these models describe or predict what happen on average. How-
ever, it may be useful to model it explicitly while taking into
account individual heterogeneity, particularly for smaller popula-
tions. Stochastic models can be of two sorts, compartmental mod-
els –where all the susceptible individuals are considered in one
single compartment- or agent-based models. Discrete-time com-
partmental models allow chance to determine the total number
of individuals from the compartment Susceptible to being infected
by infectious individuals from the previous generation.
Continuous-time compartmental models allow chance to deter-
mine when the next event will occur, whether it is the infection
of a susceptible individual or the recovery of an infected person.
They are also known as time-to-next-event compartmental mod-
els. Agent-based models (ABM) – also known as individual-based
models (IBM) – have become increasingly popular, thanks to the
availability of powerful computers. In these models, every individ-
ual is tracked separately and chance decides what happens to each
individual (infection, recovery. . .). Each individual is defined by an
extensive set of characteristics relevant to the question for which
the model is developed (age, gender, sexual behaviour, profession,
household size, etc).

To choose the most useful among the many presently available
models essentially requires definition of the purpose of the mod-
elling: Is the model built to understand and to explain, to estimate
or to predict? Indeed, the simplest models, such as the SIR model

Fig. 1. The basic SIR model with compartments S (Susceptible), I (Infected) and R (Recovered). The force of infection k represents the per capita rate at which individuals
became infected and the removal rate m represents the rate at which individuals recovered and became immune.

Fig. 2. How to build a mathematical model? The number of individuals from each compartment is estimated with a differential equation (one equation per compartment),
and each arrow going to or leaving from a compartment is represented by a term of the equation. Arrows ‘‘leaving” a compartment (such as death, infected individuals leaving
the Susceptible compartment. . .) are represented by a negative term, and arrows going to a compartment (birth, infected individuals going to the Infected compartment. . .)
are represented by a positive term. When the infection of interest has a low mortality rate and is studied over a short period, a common assumption is to consider that
population size will not change over time, therefore birth rate and mortality rate are considered equivalent and withdrawn from the model (they cancel each other out). This
simplification is naturally not valid when a long period is considered and/or infection increases mortality in a sizable proportion.
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