

Available online at www.sciencedirect.com

ScienceDirect

J. Differential Equations $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

Journal of Differential Equations

www.elsevier.com/locate/jde

On an advection–reaction–diffusion competition system with double free boundaries modeling invasion and competition of *Aedes Albopictus* and *Aedes Aegypti* mosquitoes

Canrong Tian a,1, Shigui Ruan b,*,2

^a School of Mathematics and Physics, Yancheng Institute of Technology, Yancheng, Jiangsu 224003, PR China
^b Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

Received 11 July 2017; revised 31 March 2018

Abstract

https://doi.org/10.1016/j.jde.2018.05.027

0022-0396/© 2018 Elsevier Inc. All rights reserved.

Please cite this article in press as: C. Tian, S. Ruan, On an advection–reaction–diffusion competition system with double free boundaries modeling invasion and competition of *Aedes Albopictus* and *Aedes Aegypti* mosquitoes, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.05.027

^{*} Corresponding author.

E-mail address: ruan@math.miami.edu (S. Ruan).

Research was partially supported by the Jiangsu Province 333 Talent Project.

² Research was partially supported by NSF grant (DMS-1412454) and CDC Southeastern Regional Center of Excellency in Vector-Borne Diseases – The Gateway Program (1U01-CK000510-01).

C. Tian, S. Ruan / J. Differential Equations ••• (••••) •••-••

spreading speeds of the leftward and rightward fronts. Numerical simulations are also provided to confirm our theoretical results.

© 2018 Elsevier Inc. All rights reserved.

MSC: 35B35; 35K60; 92B05

Keywords: Invasion; Competition; Advection-reaction-diffusion model; Free boundary; Traveling wave; Asymptotic spreading speed

1. Introduction

Aedes aegypti and Aedes albopictus are two prominent mosquito species which transmit the viruses that cause dengue fever, yellow fever, West Nile fever, chikungunya, and Zika, along with many other diseases. Ae. aegypti mosquito is a species with tropical and subtropical worldwide distribution and is an insect closely associated with humans and their dwellings. Ae. albopictus, a mosquito native to the tropical and subtropical areas of Southeast Asia and a most invasive species, has spread recently to many countries (including the U.S.) through the transport of goods and international travel. Inter-specific competition among mosquito larvae on larval, adult, and life-table traits exists between Ae. aegypti and Ae. albopictus and affects primarily larva-to-adult survivorship and the larval development time (Noden et al. [36]).

Before the arrival of *Ae. albopictus*, *Ae. aegypti* was a common mosquito in artificial containers throughout Florida (Morlan and Tinker [35], Frank [17]). *Ae. albopictus* was found for the first time in northern counties in Florida in 1986 (Peacock et al. [39]). Over the next six years, *Ae. albopictus* spread slowly but steadily southward, and by the summer of 1994 it had spread to all 67 counties of the state (O'Meara et al. [37]). Meanwhile, major declines in *Ae. aegypti* abundance were associated with the invasion and expansion of *Ae. albopictus* populations, not only in Florida, but elsewhere in the southern part of the continental United States (Hobbs et al. [26], O'Meara et al. [38]). By 2008, *Ae. albopictus* had spread to 36 states and continued to expand its range (Enserink [16]). In 2013, Rochlin et al. [42] predicted that North American land favoring the environmental conditions of the *Ae. albopictus* mosquito is expected to more than triple in size in the next 20 years, especially in urban areas. By the estimates of CDC [6] in 2016, *Ae. albopictus* not only has spread to all states where *Ae. aegypti* presents but also has reached habitats beyond *Ae. aegypti*'s boundaries (see Fig. 1).

Taking into account the effect of wind on the movement of mosquitoes, Takahashi et al. [44] proposed an advection—reaction—diffusion equation model to investigate the dispersal dynamics of *A. aegypti* and predicted the existence of stable traveling waves in several situations. Although Takahashi et al. gave an estimation of the speed of traveling waves of *A. aegypti*, it is the asymptotic wave speed that usually gives an approximation of the progressive spreading speed of *A. aegypti*, and it does not really show the spread of *A. aegypti* in the early stage of spatial expanding to larger areas. To describe the spatial spreading of *A. aegypti*, we (Tian and Ruan [46]) generalized the model of Takahashi et al. [44] to an advection—reaction—diffusion equation model with free boundary, where the population of the vector mosquitoes is described by a system for the two life stages: the winged form (mature female mosquitoes) and an aquatic population (eggs, larvae and pupae), the expanding front is expressed by a free boundary which models the spatial expanding of the source area. The female mosquitoes are initially located at a habitat, then spread

Please cite this article in press as: C. Tian, S. Ruan, On an advection–reaction–diffusion competition system with double free boundaries modeling invasion and competition of *Aedes Albopictus* and *Aedes Aegypti* mosquitoes, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.05.027

2

Download English Version:

https://daneshyari.com/en/article/8946277

Download Persian Version:

https://daneshyari.com/article/8946277

<u>Daneshyari.com</u>