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Abstract

In this paper, we consider the zero viscosity limit of the anisotropic incompressible Navier–Stokes equa-
tions with no-slip boundary condition (see (1.1)) in R2+. We prove that there exist T independently on ε
such that the strong solutions of (1.1) convergence to the solution of (1.2) away from the boundary and 
to solution of (1.3) near the boundary in L∞((0, T ), L2 ∩ L∞(R2+)) when the vertical viscosity vanish, 
provided that the initial velocity is regular enough and we obtain the optimal convergence rate.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the vanishing vertical viscosity limit for the following anisotropic 
incompressible Navier–Stokes equations with the no-slip boundary condition in the half 
space R2+:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu
ε + uε∂xu

ε + vε∂yu
ε + ∂xp

ε − ∂xxu
ε − ε2∂yyu

ε = 0,

∂tv
ε + uε∂xv

ε + vε∂yv
ε + ∂yp

ε − ∂xxv
ε − ε2∂yyv

ε = 0,

∂xu
ε + ∂yv

ε = 0,

vε(t, x,0) = 0, uε(t, x,0) = 0,

(uε, vε)(0, x, y) = (u0, v0).

(1.1)
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Here t > 0 and x ∈ R2+, (uε, vε) represent the fluid velocity field, pε is a scalar pressure, and the 
initial data satisfies compatibility condition

∂xu0 + ∂yv0 = 0, u0(x,0) = v0(x,0) = 0.

The anisotropic Navier–Stokes equations are widely used in geophysical fluid dynamics as a 
mathematical model for water flow in lakes and oceans, and also in the study of Ekman boundary 
layers for rotating fluids, see for instance ([4,18]). These equations appear when the domain has 
very different horizontal and vertical dimensions, the turbulent viscosity coefficients may not be 
isotropic in this case. Formally, let ε → 0, we get the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu
ε + uε∂xu

ε + vε∂yu
ε + ∂xp

ε − ∂xxu
ε = 0,

∂t v
ε + uε∂xv

ε + vε∂yv
ε + ∂yp

ε − ∂xxv
ε = 0,

∂xu
ε + ∂yv

ε = 0,

vε(t, x,0) = 0,

(uε, vε)(0, x, y) = (u0, v0).

(1.2)

We observe that the boundary condition above is sufficient to solve (1.2).
The problem of vanishing viscosity limits for the classical incompressible Navier–Stokes 

equations is a classical issue. In the absence of physical boundaries, it has been proved that 
the Navier–Stokes equations indeed convergence to the Euler equations in various functional 
settings, see [1,9]. Moreover, the anisotropic Navier–Stokes equations with vanishing vertical 
viscosity in the absence of a physical boundary were also studied in [2].

However, in the presence of physical boundaries, this problem is a challenging problem due to 
the possible formation of boundary layers. For the Navier slip boundary condition, the boundary 
layer is weak and has been studied by many authors, see [25,24,7,8,15]. In particular, Rousset and 
Masmoudi introduce the conormal functional space to justify the limit from the Navier–Stokes 
to the Euler equation.

While, for the no-slip boundary condition, the boundary layer is strong and Prandtl formally 
derived the Prandtl equation in [19], which is a nonlinear degenerate parabolic–elliptic couple 
system. To justify this formal expansion, we must first establish the well-posedness of this equa-
tion. Up to now, well-posedness of Prandtl equation is only established in some special functional 
space. Under monotonic assumptions on the velocity of the outflow, Oleinik and her collabora-
tors established the local existence of classical solutions in 2d. In this case, the global existence 
of weak solution was established for the favorable pressure by Xin and Zhang in [26]. Recently, 
Alexandre et al. and Masmoudi and Wong independently proved the local well-posedness in 
Sobolev space by the direct energy method. In [20], Sammartino and Caflisch obtained the local 
existence of analytical solution in the framework of the abstract Cauchy–Kowaleskaya theory, 
also see [12,4]. On the other hand, Gerard–Varet and Dormy proved the ill-posedness in Sobolev 
space for the linearized Prandtl equation around non-monotonic shear flows. We refer to [5] and 
reference therein for more relevant results.

However, there are only few results on the rigorous verification of the Prandtl boundary layer 
expansion. In [21], Sammartino and Caflisch achieved this in analytical setting and Wang et al.
[23] give another proof by a direct energy method. Recently, Y. Maekawa given a rigorous verifi-
cation of the Prandtl boundary layer expansion in half plane when the initial vorticity is supported 
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