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We describe a parallel implementation for the numerical approximation of solutions to 
the three-dimensional viscous, resistive magnetohydrodynamics (MHD) equations using a 
velocity–current formulation. In comparison to other formulations, the velocity–current 
formulation presented in this paper is an integro-differential system of equations that 
incorporates nonideal boundaries and nonlinearities due to induction. The solution to the 
equations is approximated using a Picard iteration, discretized with the finite element 
method, and solved iteratively with the Krylov subspace method GMRES. Effective 
preconditioning strategies are required to numerically solve the resulting equations with 
Krylov solvers [12]. For GMRES convergence, the system matrix resulting from the 
discretization of the velocity–current formulation is preconditioned using a simple, block-
diagonal Schur-complement preconditioner based on [14]. The MHD solver is implemented 
using freely available, well-documented, open-source, libraries deal.II, p4est, Trilinos, and 
PETSc, capable of scaling to tens of thousands of processors on state-of-the-art HPC 
architectures.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

MHD (magnetohydrodynamics) is the study of electrically conducting fluids in the presence of electromagnetic fields. 
MHD phenomena span from the earth’s magnetosphere, solar flares, collapse and formation of stars and galaxies [35,13,24,
25] to devices for drug delivery and image capturing in the human body by way of MHD micropumps and MHD propul-
sion [32,21,41]. Of particular interest are applications modeled by the visco-resistive MHD equations: liquid metal flows in 
aluminun casting, the Czochralski crystal growth process for silicon used in the semiconductor industry, and fusion plasmas 
for controlled fusion energy [29,19,15,18,1,12,38].

We describe a numerical method for simulating and visualizing three-dimensional magnetohydrodynamics flows. The 
method utilizes the velocity–current formulation of the viscous, resistive MHD equations (proposed in [26]). In comparison 
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to other formulations, the velocity–current formulation is an integro-differential system of equations that accounts for non-
ideal boundaries and nonlinearities due to induction [28]. The solution to the velocity–current formulation is approximated 
using a Picard linearization. The Picard linearization allows for a sparse system matrix [28]. The equations are discretized 
using the finite element method. The implementation of the method uses the core library deal.ii, an open-source, object-
oriented library for the rapid development of adaptive finite element methods, utilizing multithreading, MPI and wrapping 
to support libraries for parallelization [2]. The support library p4est was used to partition and distribute the discretized for-
mulation among the nodes of the distributed memory cluster. p4est enables adaptive mesh refinement (AMR) on a collection 
(forests) of octrees (scaling to hundreds of thousands of processor cores) [3,9].

Effective preconditioning strategies are required to numerically solve the resistive MHD equations [12]. The discretization 
of the velocity–current formulation results in a system matrix similar to that of the Navier–Stokes equations, and work on 
Schur-complement preconditioners for the Navier–Stokes equations [14] is utilized. Using deal.ii to wrap into Trilinos’ solver 
framework [20], we construct a preconditioner to iteratively solve the discretized system. The preconditioner is a simple, 
efficient block-diagonal preconditioner. We demonstrate convergence of the proposed method on two test problems. The 
approximate solutions were visualized using VisIt, an open source, interactive, parallel visualization and analysis tool for 
data defined on two and three-dimensional meshes [11].

The paper is organized as follows. Section 2 introduces the viscous, resistive MHD equations using the velocity–current 
formulation. Section 3 discusses the weak formulation and the LBB (Ladyzhenskaya, Babuska, Brezzi) condition, used to 
determine finite element pairings and construct the matrix system preconditioner. Sections 4 and 5 discuss the linear 
system and the block-diagonal preconditioner. Sections 6 and 7 provide a code flowchart and description of the numerical 
simulations which illustrate attainable convergence rates, strong scaling, and weak scaling, and concluding remarks.

2. Resistive MHD formulation

The viscous, resistive MHD equations using the velocity–current formulation (below) model the interaction of a sta-
tionary (steady-state), conductive, incompressible fluid flow (contained within a domain �) with electrical and magnetic 
fields both within and outside the domain. Employing the electric current density rather than the magnetic field as the 
primary electromagnetic variable, it is possible to avoid artificial or highly idealized boundary conditions for the electric 
and magnetic fields (where electromagnetic interactions outside the domain are neglected) and to account exactly for the 
electromagnetic interaction of the fluid with the surrounding media [29,36]. The velocity–current formulation also allows 
easy incorporation of contributions from experimentally measurable external currents when these are present.

The formulation consists of the stationary Navier–Stokes equations, Ohm’s Law, the continuity equations (conservation of 
mass and current), and Maxwell’s equations. The first four equations are:

−η�u + ρ (u · ∇)u + ∇p − J × B = F in �, (1)

σ−1J + ∇φ − u × B = E in �, (2)

and

∇ · u = 0 and ∇ · J = 0 in �. (3)

In the momentum equation (1) the viscosity η and density ρ are assumed to be constant. The unknowns are the velocity 
u, the pressure p, the current density J, and the magnetic field B. The body force F is assumed to be given. The flow 
interacts with electric currents and magnetic fields by way of the Lorentz force, J × B, term in the equation. Coupled to the 
Navier–Stokes equations by way of the magnetic induction, u × B, (and the Lorentz force) is Ohm’s law (2), a constitutive 
equation. An additional unknown in Ohm’s law is the electric potential φ. The fluid conductivity σ is assumed to be constant 
and an additional electric field E may be given (or prescribed, however in most physical situations it is zero). The continuity 
equations (3) are a consequence of fluid incompressibility, conservation of mass, and conservation of charge.

Equations (1)–(3) can be simplified by eliminating the magnetic field B using the Biot–Savart law:

B(x) = B0(x) + B (J) (x)

= B0(x) − μ

4π

∫
�

x − y

|x − y|3 × J (y)dy (4)

where B0 is the sum of fields due to given external sources, B (J) is the field generated by induction, and μ is the magnetic 
permeability of the fluid, which is also assumed to be constant. Similarly, the magnetic field due to external sources is

B0 (x) = Bext (x) − μ

4π

∫

R3\�

x − y

|x − y|3 × Jext (y)dy , (5)

where Bext accounts for possible external magnetic fields other than ones induced by known currents Jext outside the 
domain. Additional constraints are the conservation of charge ∇ · Jext = 0 for the external current(s) and Gauss’s law for the 
magnetic field ∇ · Bext = 0 in R3.
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