Accepted Manuscript

Homeomorphisms of Hashimoto Topologies

Małgorzata Filipczak, Grażyna Horbaczewska

PII: S0166-8641(18)30248-7

DOI: https://doi.org/10.1016/j.topol.2018.08.003

Reference: TOPOL 6516

To appear in: Topology and its Applications

Received date: 3 April 2018 Revised date: 6 August 2018 Accepted date: 7 August 2018

Please cite this article in press as: M. Filipczak, G. Horbaczewska, Homeomorphisms of Hashimoto Topologies, *Topol. Appl.* (2018), https://doi.org/10.1016/j.topol.2018.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

HOMEOMORPHISMS OF HASHIMOTO TOPOLOGIES

MAŁGORZATA FILIPCZAK AND GRAŻYNA HORBACZEWSKA

ABSTRACT. We investigate homeomorphisms of different types of Hashimoto topologies based on the Euclidean topology on the real line and classic σ -ideals.

1. Introduction

Let us start with a notion of Hashimoto topologies introduced independently by Martin in [12] and by Hashimoto in [4].

Let (X, \mathcal{T}) be a T_1 topological space and let \mathcal{I} be an ideal of subsets of X, containing all singletons and such that $\mathcal{I} \cap \mathcal{T} = \{\emptyset\}$. We say that such an ideal is admissible. Then the family

$$\{U \setminus P : U \in \mathcal{T}, P \in \mathcal{I}\}$$

is a base of a topology.

Under additional assumptions that (X, \mathcal{T}) is a second-countable topological space and \mathcal{I} is a σ -ideal, the considered family is a topology, denoted by $\mathcal{T}_{\mathcal{I}}$.

This kind of topologies was considered by Lukeš, Malý, Zajíček [11] as 'ideal topologies', by Jankovic and Hamlet [8] and by other authors (Lindner [10], Hejduk [5], Terepeta [14], Bingham and Ostaszewski [3]) as 'Hashimoto topologies'.

Note that such topologies have some common properties.

Theorem 1. (compare [12],[4]) Let (X, \mathcal{T}) be a second-countable topological space and let \mathcal{I} be an admissible σ -ideal. Then

- (1) $(X, \mathcal{T}_{\mathcal{I}})$ is T_1 .
- (2) The families of connected sets in (X, \mathcal{T}) and in $(X, \mathcal{T}_{\mathcal{I}})$ coincide.
- (3) $(X, \mathcal{T}_{\mathcal{I}})$ does not satisfy the first axiom of countability at any point.
- (4) $(X, \mathcal{T}_{\mathcal{I}})$ is not regular.

 $2010\ Mathematics\ Subject\ Classification.\ 54A10,\ 54A05, 54C05.$

Key words and phrases. homeomorphism, σ -ideal, Hashimoto topology.

Download English Version:

https://daneshyari.com/en/article/8946335

Download Persian Version:

https://daneshyari.com/article/8946335

<u>Daneshyari.com</u>