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ON ISOMETRIES OF SYMMETRIC PRODUCTS OF METRIC
SPACES

NAOTSUGU CHINEN

Abstract. By Fn(X), n ≥ 1, we denote the n-th symmetric product of a
metric space (X, d) as the space of the nonempty finite subsets of X with
at most n elements endowed with the Hausdorff metric dH . By Iso(X) we
denote the group of all isometries from X onto itself with the topology of
pointwise convergence. In this paper, we show that, under the certain hypoth-
esis, Iso(Fn(X)) is topologically isomorphic to the semidirect product group
Iso(Fn(X), F1(X))�Iso(X). We apply those results to �qp, (p, q) ∈ [1,∞]×N

∗
≥2,

as particular spaces and prove the following statements:
(1) If p ∈ {1,∞}, then Iso(F2(�

2
p)) is topologically isomorphic to Z2×Iso(�2p).

(2) If 3 ≤ q < ∞, then Iso(F2(�
q
∞)) is topologically isomorphic to∏q−1

i=1 (Z2)i � Iso(�q∞).
(3) In other cases except (n, p, q) ∈ N≥2 × {1,∞} × {∞}, the canonical ho-

momorphism χn : Iso(�qp) → Iso(Fn(�
q
p)) is a topological isomorphism.

1. Introduction

As an interesting construction in topology, Borsuk and Ulam [4] introduced
the n-th symmetric product of a metric space (X, d), denoted by Fn(X). Recall
that Fn(X) is the space of nonempty finite subsets of X with at most n elements
endowed with the Hausdorff metric dH (see [12, p.6] or Definition 2.2 below). A
considerable number of studies have been made on the topological structures of
Fn(X) (see [8] and [15]).

For a metric space (X, d), we denote by Iso(X) the group of all isometries from
(X, d) onto itself with the topology of pointwise convergence (see [1, p.173]).
Let n ∈ N. Every isometry φ : (X, d) → (X, d) induces an isometry χn(φ) :
(Fn(X), dH) → (Fn(X), dH) defined by χn(φ)(A) = φ(A) for each A ∈ Fn(X).
Thus, we can define the natural monomorphism χn : Iso(X) → Iso(Fn(X)). We
can easily see that this monomorphism is a topological embedding. Therefore, it
follows that

(�)n χn : Iso(X) → Iso(Fn(X)) is a topological isomorphism
(i.e., a group isomorphism and a homeomorphism)
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