## Accepted Manuscript

Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant *E. coli* and ecotoxicity from secondary-treated wastewater effluents

Lida Ioannou-Ttofa, Saurav Raj, Halan Prakash, Despo Fatta Kassinos

PII: S1385-8947(18)31531-6

DOI: https://doi.org/10.1016/j.cej.2018.08.057

Reference: CEJ 19671

To appear in: Chemical Engineering Journal

Received Date: 23 May 2018
Revised Date: 1 August 2018
Accepted Date: 9 August 2018



Please cite this article as: L. Ioannou-Ttofa, S. Raj, H. Prakash, D.F. Kassinos, Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant *E. coli* and ecotoxicity from secondary-treated wastewater effluents, *Chemical Engineering Journal* (2018), doi: https://doi.org/10.1016/j.cej.2018.08.057

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E.

coli and ecotoxicity from secondary-treated wastewater effluents

Lida Ioannou-Ttofaa, Saurav Rajb, Halan Prakashbb, Despo Fatta Kassinos \*a,c

<sup>a</sup> Nireas International Water Research Center, P.O. Box 20537, CY-1678, Nicosia, Cyprus

<sup>b</sup> Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa

Campus, NH17B, Zuarinagar, 403726, Goa, India

<sup>c</sup> Department of Civil and Environmental Engineering, University of Cyprus, P.O. Box 20537,

CY-1678, Nicosia, Cyprus

\* Corresponding authors:

Despo Fatta-Kassinos: dfatta@ucy.ac.cy

Halan Prakash: halanprakash@goa.bits-pilani.ac.in

Abstract

Urban, hospital and pharmaceutical industry wastewater effluents are among the main sources of

antibiotics' and other antimicrobial agents' contamination in soil and water ecosystems,

especially in countries where wastewater reuse is applied. Ampicillin (AMP), which is the first

semi-synthetic broad spectrum penicillin that was released on the market in 1961 has been

detected in treated wastewater effluents worldwide, at concentrations ranging from sub-ng/L up

to 27 μg/L, as well as in various environmental aqueous matrices up to 13.7 μg/L, highlighting

its recalcitrance to conventional biological treatment. Nevertheless, the degradation potential of

AMP via advanced chemical oxidation processes, which are widely considered as promising

alternatives of conventional technologies, hardly has been investigated. Thus, this study aims at

1

## Download English Version:

## https://daneshyari.com/en/article/8946798

Download Persian Version:

https://daneshyari.com/article/8946798

<u>Daneshyari.com</u>