Accepted Manuscript

Electrochemical sensor based on Electropolymerized dopamine molecularly imprinted film for tetrabromobisphenol A

Jian Shen, Tian Gan, Yunshan Jin, Juan Wang, Kangbing Wu

PII: S1572-6657(18)30560-5

DOI: doi:10.1016/j.jelechem.2018.08.019

Reference: JEAC 12558

To appear in: Journal of Electroanalytical Chemistry

Received date: 22 May 2018
Revised date: 15 August 2018
Accepted date: 16 August 2018

Please cite this article as: Jian Shen, Tian Gan, Yunshan Jin, Juan Wang, Kangbing Wu, Electrochemical sensor based on Electropolymerized dopamine molecularly imprinted film for tetrabromobisphenol A. Jeac (2018), doi:10.1016/j.jelechem.2018.08.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrochemical Sensor Based on Electropolymerized Dopamine Molecularly Imprinted Film for Tetrabromobisphenol A

Jian Shen ^a, Tian Gan ^b, Yunshan Jin ^a, Juan Wang ^{a,*}, Kangbing Wu ^{a,*}

^a Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^b College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000,

China

Abstract:

This work reported the simple and direct detection of 3,3',5,5'-tetrabromobisphenol A (TBBPA) by a polydopamine imprinted electrochemical sensor. The imprinted film was directly prepared by electropolymerization of dopamine on a glassy carbon electrode in the presence of template molecule, and then characterized using electrochemical probe of potassium ferricyanide, scanning electron microscopy and atomic force microscopy. It was found that the obtained sensing film greatly enhanced the oxidation signals of TBBPA due to strong accumulation ability. The influences of electropolymerization conditions (e.g. template concentration, scan cycles and scan rates),

^{*} Corresponding author. E-mail address: jwang1990@whu.edu.cn (J. Wang) kbwu@hust.edu.cn (K.B. Wu)

Download English Version:

https://daneshyari.com/en/article/8946853

Download Persian Version:

https://daneshyari.com/article/8946853

<u>Daneshyari.com</u>