Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier.com/locate/apenergy

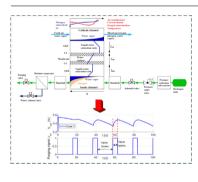
Nonlinear dynamic mechanism modeling of a polymer electrolyte membrane fuel cell with dead-ended anode considering mass transport and actuator properties

Liangfei Xu^{a,b,c,*}, Chuan Fang^{a,c}, Jianqiu Li^{a,c}, Minggao Ouyang^a, Werner Lehnert^{b,d}

^a Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, PR China

^b Institute of Energy and Climate Research, IEK-3: Electrochemical Process Engineering, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany ^c Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, PR China

^d RWTH Aachen University, Modeling Electrochemical Process Engineering, 52062 Aachen, Germany


HIGHLIGHTS

- A nonlinear dynamic model based on mass transport of a fuel cell is proposed.
- Gas permeance and liquid water saturation ratio are emphasized.
- Interaction of periphery components and fuel cell are explained in details.
- The procedure of how a purging valve affects the cell voltage is revealed.

ARTICLE INFO

Keywords: Polymer electrolyte membrane fuel cell Dead-ended anode Nonlinear dynamic mechanism model Water flooding Liquid water saturation ratio Mass transport

GRAPHICAL ABSTRACT

ABSTRACT

A dead-ended anode (DEA) has advantages such as simple structure, high reliability, and low price, and is widely utilized in polymer electrolyte membrane fuel cell (PEMFC) systems. Empirical parameters are commonly adopted in control-oriented models for such systems, and detailed information about mass transport processes is usually not available. Such models are neither helpful for understanding the internal processes within fuel cells, nor for designing control algorithms to improve system performance. A control-oriented model considering the mass transport processes and actuator properties is still lacking. This paper proposes a nonlinear dynamic mechanism model for the DEA system that can describe the dynamic voltage drop during water flooding with a large current density. The properties of the major components are explained in details, and the procedure of how the purging valves affects the mass transport and cell voltage is revealed quantitatively. The relationship between the minimum cell voltage and purging operations is summarized. The results show that (1) the proposed model can capture the stable and dynamic properties of a fuel cell with a DEA, (2) the cell voltage loss during closing of the purging valve is mainly caused by a decrease in oxygen and hydrogen partial pressures on the catalyst layers and an increase in the liquid water saturation ratio in the gas diffusion layers (GDLs); (3) the most important internal states that affect the stack voltage during purging is the liquid water saturation ratio in the GDLs.

https://doi.org/10.1016/j.apenergy.2018.08.099

Received 23 August 2017; Received in revised form 16 August 2018; Accepted 17 August 2018 0306-2619/ © 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author at: Department of Automotive Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, PR China.

E-mail addresses: xuliangfei@tsinghua.edu.cn, l.xu@fz-juelich.de (L. Xu), fangchuan1990@126.com (C. Fang), lijianqiu@tsinghua.edu.cn (J. Li), ouymg@tsinghua.edu.cn (M. Ouyang), w.lehnert@fz-juelich.de (W. Lehnert).

Amuliad	En anos	220	(2010)	106 101
Арриеа	Energy	230	(2018)	106-121

Nomenclature		3, 4, 5, 6 index		
Abbreviations		Superscripts		
CFD	computational fluid dynamic	an	anode	
CL	catalyst layer	ca	cathode	
DEA	dead-ended anode	cell	a single fuel cell	
ECSA	electrochemical surface area	int	interface of CL and GDL	
FTA	flow-through anode	m	membrane	
GDL	gas diffusion layer	ref	reference	
HRA	hydrogen recirculation anode	rf	relief valve	
MEA	membrane electrolyte assembly	pt	platinum	
PDE	partial differential equation	v	volume	
PEMFC	polymer electrolyte membrane fuel cell			
PV	purging valve	Parameters and variables		
Subscript.	s	а	activity	
subbei ipu	-	с	molar concentration, mol m^{-3}	
а	anode	f	fraction	
an	anode	ĥ	specific heat of evaporation $(J kg^{-1} K^{-1})$ OR convective	
avg	average		mass-transfer coefficient (m s ^{-1})	
avg c	cathode	i	current density, A cm^{-2}	
cell	a single fuel cell	k	nozzle orifice coefficient (kg $(s Pa)^{-1}$) OR gas adiabatic	
ch	channel		coefficient OR permeability coefficient OR coefficient	
chn	channel	$k_{\rm cd}, k_{\rm re}$	structure coefficients of a relief valve	
cri	critical value	m	mass, kg	
		n	water drag coefficient	
d	electro-osmotic drag effect	p	pressure, pa	
e	evaporation	r r	resistivity (Ω cm)	
evap	evaporation	s	liquid water saturation ratio	
em	exhaust manifolds	x	molar fraction OR molar concentration	
fc	fuel cell stack		mass fraction	
g	gas OR GDL	y ~	coordinate axis	
gdl	gas diffusion layer	Z	area, m ²	
gen	generation	A	flow rate coefficient, kg m s ^{-1} (J mol) ^{-0.5}	
gout	out of the channel	$C_{\rm d}$		
h2	hydrogen	D	mutual gas diffusivity $(m^2 s^{-1})$ OR water diffusion coef-	
1	liquid	-	ficient in membrane $(m^2 s^{-1})$	
leak	leakage	E	energy per mole, $kJ \mod^{-1}$	
liq	liquid water	F	Faraday constant, 96485.3 $\text{C} \text{mol}^{-1}$	
lw	liquid water	Н	height, m	
m	membrane	Ι	current, A	
n	internal fuel crossover through the membrane	J	molar flux, mol m ^{-2} s ^{-1}	
nt	Nernst	L	thickness OR length, m	
n2	nitrogen	M	molar mass, kg mol ^{-1}	
ohm	ohmic	Ν	number OR molar flow (mol s^{-1})	
o2	oxygen	R	resistance (Ω) OR ideal gas constant (8.31 J mol ⁻¹ K ⁻¹)	
phase	phase change from water vapor to liquid water	RH	relative humidity	
ph2	hydrogen permeance through the membrane	$R_{\rm m}$	individual gas constant, $(J kg^{-1} K^{-1})$	
pn2	nitrogen permeance through the membrane	S	source term	
po2	oxygen permeance through the menbrane	Т	temperature, K	
pv	purging valve	V	voltage (V) or volume (m ³)	
ref	reference	W	gas flux, kg s ^{-1}	
rf	relief valve	α	transfer coefficient	
s	parameter related to liquid water saturation ratio	β	net water transport coefficient	
sat	saturation	γ	pressure ratio OR electrochemical surface area per unit of	
sm	supply manifolds		volume $(m^2 m^{-3})$	
t	effective	ε	GDL porosity OR conductivity coefficient (Ω^{-1} cm ⁻¹)	
	target	ρ	density, kg m ^{-3}	
tg van	-	ρ η	overpotential	
vap	water vapor volume OR water	λ	water content	
V		μ	viscosity	
w	water standard state OP standard value OP index	μ V	gas flow velocity	
0	standard state OR standard value OR index	φ	purging action signal	
1	index OR downstream gas of a valve	Ψ	r 0 0 worrow or 0.0.1.	
1 2	index OR downstream gas of a valve	¥	r 00	

Download English Version:

https://daneshyari.com/en/article/8946990

Download Persian Version:

https://daneshyari.com/article/8946990

Daneshyari.com