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a b s t r a c t

In this paper, we study the generalized incompressible Navier–Stokes equations in R3.
Based on the energy estimates and regularization of the initial data with the heat semi-
group, we prove the well-posedness of solutions in H

5−4α
2 (R3) provided that the H

5−4α
2

(R3)-norm of initial data is sufficiently small. In addition, in contrast to the generalized heat
equation, the upper bound of the time decay rate of solutions to the generalized Navier–
Stokes equations is also established.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following generalized incompressible Navier–Stokes equations:⎧⎨⎩
ut + u · ∇u + (−∆)αu + ∇π = 0,
∇ · u = 0,
u(x, 0) = u0(x),

(1)

where u = (u1, u2, u3) ∈ R3 is the velocity field of the fluid and π ∈ R is the pressure, respectively. The fractional Laplacian
operator (−∆)δ is defined through the Fourier transform [1], namely

(̂−∆)δ f (ξ ) = Λ̂δ f (ξ ) = |ξ |2δ̂ f (ξ ),

and f̂ is the Fourier transform of f . Sometimes we writeΛ = (−∆)
1
2 for notational convenience.

This system is of interest for various reasons. For example, it includes thewell-known equations, say Navier–Stokes equa-
tions (α = 1) [2–9]. In addition, it also has similar scaling properties and energy estimate as the Navier–Stokes equations.

In [10], Lions proved that when α ≥
5
4 , the 3D generalized Navier–Stokes equations have a global and unique regular

solution (see also in [11] and [12], the MHD equations reduce to the Navier–Stokes equations as the magnetic field
b = 0). However, for the case α < 5

4 , the global well-posedness theories of 3D generalized Navier–Stokes equations
remain open. Consequently, considerable works are devoted to concerning the regularity criteria for this range (see for
example [13,12,14,15]). Another direction is to obtain its existence of global solutions for system (1) with small initial data
u0 belonging to a variety of spaces, for example, the Besov spaces Ḃr

2,1 and Br
2,q [16], the critical spaces G−(2α−1)

3 (R3) and
BMO−(2α−1)(R3) [17], the critical spaceQ β,−1

α;∞
(R3) [18], the localQ -type spaces [19], the largest critical spaces Ḃ−2α−1

∞,∞ (Rn) [20],
the critical Triebel–Lizorkin type oscillation spaces Ḟ γ1,γ2p,q (R3) [21].
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Define the fractional-order (homogeneous) Sobolev spaces Ḣs(R3) by using Fourier transform:

Ḣs(R3) = {u ∈ P ′
: û ∈ L1loc(R

3), |ξ |sû(ξ ) ∈ L2(R3)},

with

∥u∥2
Ḣs(R3) :=

∫
R3

|ξ |2s|û(ξ )|2dξ,

where P ′ is the collection of all tempered distributions.
We want to prove the local existence for all initial data in the critical spaces Ḣ

5−4α
2 and global existence for initial data

whose Ḣ
5−4α

2 norm is small enough. More precisely, the result can be stated as follows.

Theorem 1. Suppose that α ∈ (0, 5
4 ) and u0 ∈ H

5−4α
2 (R3). Then

• there exists a time T = T (u0) > 0 such that system (1) have a unique solution

u(x, t) ∈ L∞(0, T ; Ḣ
5−4α

2 )
⋂

L2(0, T ; Ḣ
5−2α

2 ) (2)

• there is an absolute constant ϵ which is independent of u0 such that if ∥u0∥
Ḣ

5−4α
2

< ϵ, then the solution satisfies (2) for
every T > 0 and hence is unique for all t > 0.

Remark 2. Since the 3D generalized Navier–Stokes equations have a global and unique regular solution when α ≥
5
4 , we

only consider the case 0 < α < 5
4 in this paper.

Remark 3. The same strategy was developed in [9,22] for 3D Navier–Stokes equations. Theorem 1 can be viewed as
complementary result of [9,22].

It was Jiu and Yu [23] who first studied the decay of solutions to the 3D generalized Navier–Stokes equations. Supposed
that 0 < α < 5

4 and u0 ∈ L2(R3)
⋂

Lp(R3) with max{1, 1
3−2α } ≤ p < 2, the authors showed that the decay of the solution is

∥u∥2
L2 ≤ C(1 + t)−

3
2α

(
2
p −1

)
. (3)

Analyze the above results, we find that there is one interesting problem need to be considered: Jiu and Yu [23] did not study
the case α > 1 and u0 ∈ Lp(R3)

⋂
L2(R3) with 1 ≤ p < 1

3−2α . Can we establish the decay estimate for this case?
In the following, we consider the time decay rate of solutions to systems (1). The motivation is to understand how the

parameter α affects the time decay rate of its solutions. Here, we contrast with the generalized heat equations, study the
decay rate of solutions for systems (1), establish the L2 decay of solutions for u0 ∈ L2(R3)

⋂
L1(R3) and 0 < α < 2. More

precisely, we have the following result:

Theorem 4. Suppose that 0 < α < 2, u0 ∈ L2(R3)
⋂

L1(R3) and ∇ · u0 = 0. Then, for the solution u(x, t) of system (1), there
exists a positive constant C = C(α, ∥u0∥L1 , ∥u0∥L2 ), such that

∥u(x, t)∥2
L2 ≤ C(1 + t)−

3
2α , for large t.

Remark 5. The time decay problemof solutions to the dissipative equations implies that the trivial solution is asymptotically
stable. It is an interesting problem to consider the time decay rate of solutions to dissipative equations. One of the powerful
tools is Fourier splitting method, which is introduced by Schonbek in 1980s (see [24,25]). There are also some other tools to
study the decay rate, for example, Kato’s method [5,26,27], the maximal principle [28], Zhou’s method [29,30] and so on.

Remark 6. As we know, Theorem 4 is the first decay estimates for system (1) with α ∈ [
5
4 , 2). However, because of our

decay estimate is dependent on ∥∇v∥L∞ ≤ Ct
2
α heavily, it is difficult to break the restriction α ≥ 2.

The rest of the paper is organized as follows. In the next section, we prove Theorem 1 while the proof of Theorem 4 is
postponed in Section 3.

2. Proof of Theorem 1

First of all, we write down the definition of weak solutions for system (1).
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