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a b s t r a c t

This paper presents a simple empirical formula of origin intensity factor in singular bound-
ary method (SBM) solution of Hausdorff derivative Laplace equations. The SBM with the
empirical formula is mathematically more simple and computationally more efficient than
using the other techniques for origin intensity factor. Numerical experiments simulate the
steady heat conduction through fractal media governed by the Hausdorff Laplace equation,
and show the efficiency and reliability benefits of the present SBM empirical formula.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Hausdorff derivative [1], as a local operator, is introduced to overcome high computing costs of the non-local
fractional derivative, and in recent years has widely been applied to various complex problems, such as water transport
in unsaturated media [2], heat transfer of Li-ion cells [3], magnetic resonance imaging [4,5], and economics [6]. The
Hausdorff derivative can be used to describe the anomalous diffusion problems underlying the well-known stretched
Gaussian statistics and the Kohlrausch–Williams–Watts stretched exponential decay. In addition, its derivative order has
clear physical meaning and is directly related to the Hausdorff fractal dimension [7,8]. In fact, although the Hausdorff and
fractal derivatives are both metric derivatives (as pointed in Ref. [9]), their definitions are based on quite different metrics.
Consequently, the properties of these derivatives are significantly different [10,11]. Specifically, there is noway to formulate
non-trivial boundary conditions with the use of the fractal derivative introduced in Ref. [8], because, per its definition, the
fractal derivative is singular at the fractal boundary [10]. The rigorous definition of the Laplace operator associated with
the Hausdorff derivative is given in Ref. [11]. More general forms of the Laplace operator associated with fractal metrics are
discussed in Ref. [12]. In addition, the conformable derivative [13] can simply be transformed to the Hausdorff derivative
and their equivalence has been numerically verified [14,15].

The Hausdorff derivative underlies a non-Euclidean metric, called the Hausdorff fractal distance [16]. It should be noted
that the Euclidean distance is only a special limiting case of the Hausdorff fractal distance. Chen and Wang [16] gave the
fundamental solutions of a few typical Hausdorff differential operators via the Hausdorff fractal distance, and employed
the singular boundary method (SBM) [17–19], a recent meshless boundary collocation method based on the fundamental
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solutions, to simulate the potential problems governed by the Hausdorff Laplace equations. The SBM takes the fundamental
solution as the basis functions and introduces the concept of the origin intensity factor (OIF) to remove the singularities
of fundamental solution upon the coincidence of source and collocation nodes on the physical boundary. As shown in
Refs. [20,21], the OIF plays a central role in guaranteeing numerical accuracy and efficiency, and therefore considerable
studies have beenmade to design efficient techniques to determine the OIF, such as the inverse interpolation technique, the
subtracting and adding-back desingularization technique, the integral average approach, and the empirical formulas. For
details see Ref. [21] and references therein. Due to the fractal characteristics of the Hausdorff derivative partial differential
equations, it is not an easy task to evaluate the OIF in the SBM for such equations.

For the integer-order dimensional potential problems, Refs. [20] and [21] present the efficient empirical formulas of
two- and three-dimensional cases, respectively. As far as we know, the empirical formula is undoubtedly the simplest and
most efficient technique to make the SBM simulation. In this regard, this paper proposes an empirical formula of the OIF
in the SBM for two-dimensional Hausdorff derivative Laplace equations, with the help of the scale transformation and the
Hausdorff fractal distance. Compared with the other techniques, the empirical formula can be easily used in the Hausdorff
derivative Laplace equation. Numerical experiments confirm the efficiency and accuracy of the proposed empirical formula.

The rest of the paper is organized as follows. The Hausdorff Laplace equation and its fundamental solution are introduced
in Section 2. The empirical formula of the OIF in the SBM for Hausdorff Laplace equations is presented in Section 3. In
Section 4, we discuss numerical experiment results of steady heat conduction governed by the Hausdorff Laplace equation
via the SBM. Some conclusions are made in Section 5.

2. Hausdorff Laplacian and its fundamental solution

2.1. Hausdorff Laplacian

Considering a particle movement in the fractal time direction, the movement displacement can be expressed as [16]

ℓ (τ) = v(τ − t0)α, (1)

where ℓ denotes the distance, v represents the velocity, τ the current time instance, t0 the initial instance, α the fractal
dimension in time. If the velocity v varies with the time, the Hausdorff integral distance can be computed by the following
integral formula

ℓ (t) =

∫ t

t0

v (τ) d(τ − t0)α. (2)

Based on the above expression, we can get the following Hausdorff derivative:

dℓ
dtα

= lim
t→t

ℓ(t) − ℓ(t)

(t − t0)α −
(
t − t0

)α =
1

α(t − t0)α−1

dℓ
dt

. (3)

Let the initial instance be t0 = 0, Eq. (3) is rewritten as

dℓ
dtα

= lim
t→t

ℓ(t) − ℓ(t)
tα − tα

=
1

αtα−1

dℓ
dt

. (4)

Similarly, the Hausdorff derivative in space is stated as
du
dxβ

= lim
x→x

u(x) − u(x)

xβ − xβ
=

1
βxβ−1

du
dx

, (5)

where u denotes the physics quantity in a fractal medium such as temperature and displacement, 0 < β ≤ 1 represents the
Hausdorff fractal in space. Note that the origin of spatial coordinate system in Eq. (5) is assumed zero.

The Hausdorff derivative Laplace equation in two topological dimension is given by

∂

∂xβ

(
∂u
∂xβ

)
+

∂

∂yβ

(
∂u
∂yβ

)
= 0. (6)

2.2. Hausdorff fundamental solutions

In order to develop the partial differential equation model of physical problems on nowhere integer-order differentiable
fractal, we need to map the fractal problem into a continuum framework with a proper fractal metric. The Hausdorff fractal
distance, as a non-Euclidean metric, is presented to describe fractal media in Refs. [1,7,16]:⎧⎪⎪⎨⎪⎪⎩

∆tα = tα − tα0

rβ
=

√ d∑
i=1

(
xβ

i − yβ

i

)2
,

(7)
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