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a b s t r a c t

In this paper, we extent the classical spectral approximation theory for compact and
bounded operators to general linear operators, and then apply it to polynomial eigenvalue
problems (PEP).We also study the essential spectrum in PEPs, and prove that this spectrum
is stable under relatively compact perturbations. Based on this analysis, we give some
suggestions to make algorithms for solving PEPs more efficient.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Polynomial eigenvalue problems (PEP) arise in many applications, e.g. acoustics, fluid mechanics and photonic crystals.
There exists an extensive literature discussing PEPs and related numerical methods [1–3]. In this paper, we will study the
approximation theory for PEPs and the behavior of their essential spectra under relatively compact perturbations. The
analysis shows that it is reasonable in eigenvalue computations to exclude a small neighborhood around the points in
the essential spectrum. These eigenvalues are densely clustered and hard to compute, while they do not provide much
information compared to well separated eigenvalues.

Let X be a Banach space equipped with the norm ∥ · ∥, and {Mi}
p−1
i=0 be a series of linear operators from X to itself. We

consider a polynomial eigenvalue problem (PEP): find (λ, u) ∈ C × X , with u ̸≡ 0, such that

P(λ)u ≡

(
λp +

p−1∑
i=0

λiMi

)
u = 0. (1.1)

In applications, many problems can be translated into this form. Let X = X × · · · × X  
p

be equipped with the norm ∥u∥ =

∥u0∥ + · · · + ∥up−1∥ for u = (u0, . . . , up−1)T ∈ X. We consider the linear operator S : X → X defined as
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S =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · · · · −M0
I 0 · · · · · · −M1

0 I
. . . · · · −M2

...
...

. . .
. . .

...

0 0 · · · · · · −Mp−1

⎞⎟⎟⎟⎟⎟⎠ ,
with I the identity operator on X . If (λ, u) is an eigenpair of (1.1), then (λ, u) is a pair satisfying

Su = λu, (1.2)

which follows directly from the relations

up−1 = u,

up−i = λup−i+1 + Mp−i+1up−1, for i = 2, . . . , p,
(1.3)

obtained by expanding (1.2). This means that (1.2) and (1.1) share the same spectrum [4]. The eigenvalue problem (1.2)
is called the linearized formulation of (1.1). We consider the spectrum of (1.2) and its approximation instead of (1.1). The
resolvent set of S is denoted by ρ(S), and its spectrum is σ (S) = C \ ρ(S).

Classical spectral approximation theories are developed for compact operators [5] and bounded operators [6]. The crucial
point in these theories is uniform (or norm) convergence of approximate operators. For example, when studying the spectral
approximation of the Laplace operator numerically, what we study, in fact, is its inverse (or solution) operator, which is a
compact operator. In the eigenvalue problem (1.2), it is, however, possible that some of the operators {Mi}

p−1
i=0 are unbounded,

which results in S being an unbounded operator. The inverse of S is generally not easy to obtain, and it may be also
unbounded. This motivates us to analyze more general operators, and use this theory to approximate their spectrum.

In many (polynomial) eigenvalue problems, a large number of eigenvalues will be concentrated in some small regions
around points in the essential spectrum in the complex plane C. This can complicate the numerical solution of these
eigenvalue problems. We present two examples to illustrate this phenomenon. The first example is: find (λ, u) ∈ C × X
with u ̸≡ 0, such that

λ2Iu − 3λIu + 2Iu = 0. (1.4)

This problem only contains two eigenvalues, λ1 = 1 and λ2 = 2, each with multiplicity equal to dimX . For the second
example, we consider the quadratic eigenvalue problem(

λ2 − 2λA + A
)
u = 0. (1.5)

Here, A : L2(Ω) → L2(Ω), withΩ = [0, π], is the one-dimensional Laplace operator, such that for f ∈ L2(Ω), Au = f ∈ L2(Ω)
satisfies

−u′′(x) =f in Ω,

u(0) = u(π ) =0.
(1.6)

The set of exact eigenpairs ofA are {(k2, sin kx)}+∞

k=1 . The quadratic eigenvalue problem (1.5) has the same set of eigenfunctions
as A. Introducing the pair (k2, sin kx) into (1.5), we have

λ2k − 2k2λk + k2 = 0. (1.7)

The eigenvalues of (1.5) then are equal to

λ(k,1) = k2 −

√
k4 − k2 and λ(k,2) = k2 +

√
k4 − k2 for k = 1, 2, . . . . (1.8)

For k → +∞, λ(k,2) are isolated points tending to +∞, while λ(k,1) →
1
2 . The eigenvalues λ = 1, 2 (infinite multiplicity) in

(1.4), and λ =
1
2 ,+∞ (accumulation points) in (1.5) are essential spectral points. If we discretize I in (1.4) using the identity

matrix In×n the multiplicities of the two numerical eigenvalues λ = 1, 2 are both n. For the discrete approximation of (1.5),
there will be a large number of numerical eigenvalues around 1

2 in the complex plane, as shown in Fig. 1.1. In computations,
we should avoid computing too many numerical eigenvalues close to these essential spectral points, which are expensive to
compute and provide little information compared with well isolated eigenvalues.

For arbitrary PEPs, it is, however, not easy to compute the essential spectral points analytically, as could be done for
Problems (1.4) and (1.5). In particular, if the operators {Mi}

p−1
i=0 are different fromeach other. For finite-dimensional operators,

there are no accumulation points or points with infinite multiplicity in their spectrum. So we cannot obtain the essential
spectra from their corresponding discrete problems, either.

In some applications [7,2,8], each Mi in the PEP may be split into two parts, one ‘main’ operator A and perturbations Bi,
i.e.

Mi = αiA + Bi for i = 0, . . . , p − 1, where αi ∈ C.
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