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A B S T R A C T

Both linear and nonlinear relationships may exist among process variables, and monitoring a process with such
complex relationships among variables is imperative. However, individual principal component analysis (PCA)
or kernel PCA (KPCA) may not be able to characterize these complex relationships well. This paper proposes
a parallel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme that incorporates randomized algorithm
(RA) and genetic algorithm (GA) for efficient fault detection for a process with linearly correlated and nonlinearly
related variables First, to determine the included variables in the parallel PCA (P-PCA) and the parallel KPCA
(P-KPCA) models, GA-based optimization is performed, in which RA is used to generate faulty validation data.
Second, monitoring statistics are established for the P-PCA and the P-KPCA models, in which the process status
is determined. The proposed monitoring scheme discriminates the linear and nonlinear relationships among
variables in a process and deals with nonlinear processes efficiently. We provide case studies on a numerical
example and the continuous stirred tank reactor process. These case studies demonstrate that the proposed P-
PCA–KPCA monitoring scheme is better than conventional PCA- or KPCA-based methods at performing nonlinear
process monitoring.

1. Introduction

Process monitoring that focuses on fault detection and diagnosis
plays an important role in ensuring process safety (Chiang, Russell, &
Braatz, 2001; Jiang & Huang, 2016; Zhao & Gao, 2017). In recent years,
data-based fault detection and diagnosis methods have become a hot
topic because of the rapid advancement of data gathering and storing
techniques (Chen, 2016; Ding, 2014; Jiang, Ding, Wang, & Yan, 2017;
Ma, Dong, Peng, & Zhang, 2017; Rashidi, Singh, & Zhao, 2017; Wang
& Zhao, 2017). As one of the most fundamental techniques, principal
component analysis (PCA) has been intensively studied and extended
(Bakdi, Kouadri, & Bensmail, 2017; Jiang & Yan, 2014). Dynamic
PCA was developed to deal with dynamic processes with time-series
autocorrelation (Ku, Storer, & Georgakis, 1995; Li, Qin, & Zhou, 2014).
Recursive or moving window PCA was developed for time-varying
processes (Li, Yue, Valle-Cervantes, & Qin, 2000; Wang, Kruger, &
Irwin, 2005). Multiway PCA was applied in monitoring batch processes
(Nomikos & Macgregor, 1994; Wise, Gallagher, Butler, White, & Barna,
2015). Distributed PCA was developed for processes that consist of a
large number of variables (Ge & Song, 2013; Jiang, Yan, & Huang,
2016). Although numerous successful applications have been reported,
PCA performs poorly in dealing with nonlinear processes because it
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characterizes only the linear correlation among variables and does not
explore the nonlinear relationships.

Several nonlinear monitoring methods have been proposed to deal
with the nonlinearity of a process. Neural network-based approaches
were developed (Kramer, 1991; Yuan et al., 2017). However, nonlinear
optimization is generally involved in these methods (Dong & McAvoy,
1996; Kramer, 1991). To avoid nonlinear optimization, kernel PCA
(KPCA) was proposed and extended intensively (Lee, Yoo, Sang, Vanrol-
leghem, & Lee, 2004; Schölkopf, Smola, & Müller, 1998). For example,
an adaptive KPCA monitoring method was proposed in Cheng, Hsu, and
Chen (2010), a KPCA combined with kernel density estimation (KDE)
method was proposed in Samuel and Cao (2016), and a multivariate
statistical KPCA method was presented in Luo, Li, Deng, Zhong, and Cai
(2016). Despite successful applications of KPCA (Jiang & Yan, 2015; Yi
et al., 2017; Zhang, Du, & Li, 2017), some issues remain unresolved,
such as the monitoring of a process with both linearly correlated and
nonlinearly related variables. Given the large number of variables,
including all variables in one KPCA model is not appropriate because
doing so prevents the data structure from being characterized well. The
monitoring of a chemical process with linear and nonlinear relationships
remains an open question.
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Hybrid modeling techniques have attracted considerable attention in
the area of process modeling and monitoring (Chen, 2011; Zhang, Chai,
& Wang, 2017). The key idea of hybrid modeling is to use different
types of models or approaches to characterize different relationships
among variables. Several results for hybrid nonlinear process model-
ing have been reported (Chen, 2011; Zhang, Chai, & Wang, 2017).
Recently, a serial PCA (SPCA)-based modeling and monitoring method
that performs KPCA using residual PCA has been proposed (Deng, Tian,
Chen, & Harris, 2016). Although the efficiency of this method has been
demonstrated, the nonlinear relation among measured variables may be
concealed in the extracted features of PCA, and the linear and nonlinear
relationships may not be well represented. Moreover, the monitoring
performance may be degraded.

Inspired by the idea of hybrid modeling, this paper proposes a paral-
lel PCA–KPCA (P-PCA–KPCA) modeling and monitoring scheme to deal
with processes that contain linearly correlated and nonlinearly related
variables. The key issue is to explore the complex relationships among
variables and determine which variable should be included in the PCA
or the KPCA models, i.e., variable emplacement. This paper proposes an
randomized algorithm (RA) integrated with a genetic algorithm (GA)-
based method to automatically emplace process variables. RA has been
widely used to deal with uncertain issues in robust control (Karp, 1991;
Tempo, Calafiore, & Dabbene, 2005) as well as fault diagnosis scheme
design (Chen, Ding, Peng, Yang, & Gui, 2017; Jiang, Wang, & Yan,
2017; Krueger et al., 2017). Here RA is employed to generate faulty
validation data, based on which the GA optimization is performed. To
the best of our knowledge, this is the first time that a P-PCA–KPCA
fault detection model is established. Unlike classical PCA and KPCA
methods, the proposed P-PCA–KPCA monitoring scheme discriminates
linear and nonlinear relationships and therefore exhibits superiority in
dealing with nonlinear processes.

The remainder of this paper is structured as follows: Section 2
provides a brief review of the basics of PCA, KPCA, and RA. The
monitoring problem of nonlinear processes with linear and nonlinear
relationships is formulated. Section 3 details the proposed P-PCA–
KPCA monitoring scheme. Section 4 presents application examples on
a numerical nonlinear example and continuously stirred tank reactor
(CSTR) process and shows performance comparisons with some state-
of-the-art methods. Section 5 draws the conclusions.

2. Preliminaries and problem formulation

2.1. PCA-based fault detection

PCA is generally used to deal with a linear process with Gaussian-
distributed variables. Let 𝑿 ∈ R𝑚×𝑁 denote a set of normalized data
with 𝑚 variables and 𝑁 samples. Performing singular value decomposi-
tion on the covariance matrix 𝜮 of 𝑿 derives (Ding, 2014)

𝜮 = 1
𝑁 − 1

𝑿𝑿𝑇 = 𝑷𝜦𝑷 𝑇 , (1)

where 𝜦 = 𝑑𝑖𝑎𝑔
(

𝜆1,… , 𝜆𝑚
)

and 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑚 ≥ 0. In PCA, the
load matrix 𝑷 ∈ R𝑚×𝑚 is divided as 𝑷 =

[

𝑷𝑝𝑐 𝑷𝑟𝑒𝑠
]

and 𝜦 is divided as
𝜦 =

[

𝜦𝑝𝑐 0
0 𝜦𝑟𝑒𝑠

]

. Given a data sample 𝒙 ∈ R𝑚×1, two statistics, namely,
𝑇 2 and 𝑄, are constructed as (Ding, 2014)
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2

𝐸
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𝑝𝑐

)

𝒙, (3)

where 𝑰 ∈ R𝑚×𝑚 is the identity matrix.

2.2. KPCA-based fault detection

KPCA is generally used to deal with nonlinear processes. Let 𝒙𝑗 ∈
R𝑚, 𝑗 = 1,… , 𝑁 , denote a set of zero-mean data. Through nonlinear
mapping 𝛷 (⋅), the covariance of the mapped data in the feature space
𝑪𝐹 is (Lee et al., 2004; Schölkopf et al., 1998)

𝑪𝐹 = 1
𝑁

𝑁
∑

𝑗=1
𝛷
(

𝒙𝑗
)

𝛷
(

𝒙𝑗
)𝑇 . (4)

𝑪𝐹 can be diagonalized by eigenvalue decomposition as

𝜆𝒗 = 𝑪𝐹 𝒗, (5)

where 𝜆 ≥ 0 denotes the eigenvalues, and 𝒗 denotes the eigenvectors.
Substituting Eq. (4) in Eq. (5) derives (Lee et al., 2004; Schölkopf et al.,
1998)
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(

1
𝑁

𝑁
∑

𝑗=1
𝛷
(

𝒙𝑗
)

𝛷
(

𝒙𝑗
)𝑇

)

𝒗 = 1
𝑁

𝑁
∑

𝑗=1

⟨

𝛷
(

𝒙𝑗
)

, 𝒗
⟩

𝛷
(

𝒙𝑗
)

. (6)

Considering that all solutions 𝒗 with 𝜆 ≠ 0 lie in the span of
𝛷
(

𝒙1
)

,… , 𝛷
(

𝒙𝑁
)

, coefficients 𝛼𝑖(𝑖 = 1,… , 𝑁) that satisfy 𝒗 =
∑𝑁

𝑖=1𝛼𝑖
𝛷
(

𝒙𝑖
)

exist. Then, Eq. (5) becomes (Lee et al., 2004; Schölkopf et al.,
1998)
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for all 𝑘 = 1,… , 𝑁 . With the introduction of a kernel matrix 𝑲 with
[𝑲]𝑖𝑗 = 𝐾𝑖𝑗 =

⟨

𝛷
(

𝒙𝑖
)

, 𝛷
(

𝒙𝑗
)⟩

, Eq. (7) becomes (Lee et al., 2004;
Schölkopf et al., 1998)

𝜆𝑁𝑲𝜶 = 𝑲2𝜶, (8)

where 𝜶 =
[

𝛼1,… , 𝛼𝑁
]𝑇 . For a new sample 𝒙, the kernel principal

component (KPC) is calculated as (Lee et al., 2004; Schölkopf et al.,
1998)

𝑡𝑘 = ⟨𝒗𝑘, 𝛷 (𝒙)⟩ =
𝑁
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)

, 𝛷 (𝒙)
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, (9)

where 𝑘 = 1,… , 𝑝 (𝑝 denotes the number of retained KPCs). The statistics
of 𝑇 2 and 𝑄 are formulated as (Lee et al., 2004; Schölkopf et al., 1998)

𝑇 2 = [𝑡1,… , 𝑡𝑝]𝜦−1[𝑡1,… , 𝑡𝑝]𝑇 , (10)
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=
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𝑝
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𝑗=1
𝑡2𝑗 , (11)

where 𝑛 denotes the number of non-zero eigenvalues.

2.3. Randomized algorithm

In the design of a process monitoring scheme, false alarm rate (FAR)
and fault detection rate (FDR) are two important indices for evaluating
the monitoring performance. The computation of FAR and FDR involves
the computation of probability where 𝐽 > 𝐽𝑡ℎ under certain (fault)
conditions. Given the accuracy requirement 𝜀 ∈ (0, 1) and the confidence
level 𝛿 ∈ (0, 1), RA delivers an estimate 𝑝̂ (𝛾) of 𝑝 (𝛾) = 𝑝𝑟𝑜𝑏(𝐽 (𝜔) ≤ 𝛾)
(the probability of 𝐽 (𝜔) ≤ 𝛾) such that

𝑝 (𝛾) < 𝑝̂ (𝛾) + 𝜀 (12)

with a probability of at least 1 − 𝛿, where 𝜔 is the random variable
with the known density 𝐷 (𝜔) and support 𝐷𝜔 (Tempo et al., 2005).
In the RA framework, 𝑁𝑅 independent identical distributed random
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