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a b s t r a c t 

Four kinds of configurations represented by compact tension (CT) specimen, single edge-notched bending (SEB) 

specimen, single edge-notched tension (SET) specimen and C-shaped inside edge-notched tension (CIET) specimen 

were simulated by ANSYS 14.5 under plane strain conditions and three dimension (3D) conditions for determining 

the parameters of load-displacement, J integral-load etc. semi-analytical expressions. And a novel semi-analytical 

method is proposed to obtain J resistance curves of ductile materials on the basis of equivalent energy principle. 

In order to examine the validity of semi-analytical expressions, the fundamental curves (e.g., load-displacement, 

J integral-load curves etc.) predicted by the expressions were compared with the curves obtained from finite 

element analysis (FEA). It can be observed that they agree well with each other. Moreover, the real-time crack 

length and J integral of growing cracked specimen at arbitrary loading points can be determined through solving 

the explicit expressions. And a corrected formula of J integral was obtained in order to consider the influence of 

crack growth of sharp cracked specimen. Further, the J resistance curves of Cr2Ni2MoV for CT specimens and 

26NiCrMoV11-5 for CIET specimens were successfully obtained via the new method, which show good agreement 

with the results determined by traditional normalization method. And the crack lengths predicted by the method 

match with those obtained by physical measurement on the fracture surface of specimens. Meanwhile, the critical 

J C which represents the sharp cracked specimen beginning to growth can also be easily determined. 

1. Introduction 

The fracture toughness measurement of ductile material plays a key 

role in safety assessment of structures, the key point of which is to 

measure the J integral of crack components. The theoretical concept 

of J integral was developed in 1967 by Cherepanov [1] and in 1968 

by Rice [2] independently, and it was latterly proved by Hutchinson 

[3] , Rice and Rosengren [4] that the J integral can represent the inten- 

sity of stress-strain field around the crack tip of crack components for 

elasto-plastic materials, named HRR field. In 1972, Begley and Landes 

[5] proved that J integral can be taken as a control parameter to char- 

acterize the quasi-static fracture behaviors of ductile materials. Further, 

Shih and Hutchinson [6,7] obtained the numerical fully-plastic expres- 

sions of load-plastic displacement ( P - h p ) relation and plastic J integral- 

load ( J p - P ) relation etc. for different configurations based on refined 

finite element analysis (FEA) [8-10] in 1976, and an engineering ap- 

proach for elastic-plastic fracture analysis was proposed at the same 

time. Based on the research findings of Shih and Hutchinson [6,7] , 

Kumar et al. [11] wrote an elastic-plastic fracture mechanics manual, 

named EPRI manual. The manual gave a feasibility for elasto-plastic 
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safety assessment of crack components, but all the elastic-plastic equa- 

tions provided in the manual are implicit, in order to obtain the J re- 

sistance curves of materials, a mass of computations are required in or- 

der to obtain the crack driving force diagram via the tables given in 

the manual. Furthermore, the EPRI method didn’t consider the influ- 

ence of crack growth of sharp cracked specimen. Analogous, Qian et al. 

[12,13] proposed a hybrid method to obtain the J resistance curves of 

ductile materials by combining experiments and finite element analyses, 

but it has the similar drawbacks with EPRI method. Until now, it’s still a 

difficult process to obtain the J resistance curves of ductile materials the- 

oretically, so the experimental methods such as unloading compliance 

method (UCM) [14,15] , normalization method (NM) [ 16–18 ], and sepa- 

rable S pb method (SSM) [19,20] are widely used. However, the accurate 

measurement of real-time crack length of growing cracked specimen by 

these experimental methods is still difficult. For examples, the unloading 

compliance is sensitive to the crack length of growing cracked specimen 

in the UCM, which usually causes more deviations in predicting the real- 

time crack length; the NM requires to measure the initial crack length 

and final crack length of growing cracked specimen, and the form of 

deformation function is determined empirically in order to obtain the 

real-time crack length of specimen; in SSM, the choice of reference blunt 
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cracked specimen severely effect on the prediction of real-time crack 

length of growing cracked specimen. Additionally, the aforementioned 

experimental methods must determine the plastic factor 𝜂p first in order 

to obtain the J integral of specimen. According to the research findings 

of Ernst and Paris [21] , 𝜂p is inexistent when the assumption of load 

separation principle cannot be met. Generally speaking, two methods 

represented by plastic work method [22] and load separation method 

[23] are usually used to obtain the plastic factor 𝜂p , and the 𝜂p is consid- 

ered as a function only related to the crack length of specimen. However, 

Donato and Ruggieri [24] and Huang et al. [25] analyzed the value of 𝜂p 

for SEB specimens by FEA, the results indicated that 𝜂p is related to not 

only crack length but also material properties and loading force. Simi- 

lar conclusions were obtained by Cravero and Ruggieri [26] , Ruggieri 

[27] and Huang and Zhou [28] based on their research findings of 𝜂p 

for SET specimens. Consequently, the J resistance curves of ductile ma- 

terials obtained by traditional experimental methods are approximate 

results. 

In this paper, several elasto-plastic semi-analytical expressions of 

load-displacement, energy-load and J integral-load relations are ob- 

tained on the basis of Chen–Cai equivalent energy principle [29–31] . 

The validity checks of these formulas were performed by FEA. Finally, 

a novel method is applied to obtain the J resistance curves of ductile 

materials by compact tension (CT) specimen and C-shaped inside edge- 

notched tension (CIET) specimen [32] . 

2. The theoretical model 

Ramberg–Osgood constitutive relation is the most common model to 

describe power-law hardening materials in fracture mechanics. It has a 

form as 

𝜀 = 𝜀 𝑒 + 𝜀 𝑝 = 

𝜎

𝐸 

+ 

(
𝜎

𝐾 

)𝑁 

(1) 

where 𝜎 represents true stress and 𝜀 true strain of material, respectively. 

𝜀 e is elastic strain and 𝜀 p plastic strain. E is elastic modulus, K strength 

coefficient and N hardening exponent. 

When only considering the fully plastic part of Eq. (1) , the total plas- 

tic strain energy U p of arbitrary deformation body can be given as 

𝑈 𝑝 = ∭
Ω

𝑢 𝑝 −eq ( 𝑥, 𝑦, 𝑧 ) 𝑑 𝑥𝑑 𝑦𝑑 𝑧 = 𝑢 𝑝 −eqm 𝑉 𝑝 (2) 

where Ω is effective deformed zone of deformation body, u p -eq is equiv- 

alent plastic strain energy density of representative volume element 

(RVE) at arbitrary point ( x, y, z ) in the deformed zone, V p is effective 

deformed volume of Ω, u p -eqm 

is RVE’s plastic strain energy density at 

energy center 𝜉 ( x 𝜉 , y 𝜉 , z 𝜉), and it can be written as 

𝑢 𝑝 −eqm = ∫
𝜀 𝑝 −eqm ( ℎ 𝑝 ) 

0 
𝜎𝑑 𝜀 𝑝 = 

𝑁𝐾 

𝑁 + 1 
𝜀 
1+1∕ 𝑁 

𝑝 −eqm (3) 

where h p represents fully plastic displacement. Further, the total plastic 

strain energy U p is expressed as [30] 

𝑈 𝑝 = 

𝑁𝐾 

𝑁 + 1 
𝑉 𝑃 𝜀 

1∕ 𝑁+1 
𝑝 −eqm = 

𝑁𝐾 𝑉 ∗ 

𝑁 + 1 
𝑉 𝑃 

𝑉 ∗ 
𝜀 
1∕ 𝑁+1 
𝑝 −eqm (4) 

in which V 

∗ is characteristic volume and V 

∗ = A 

∗ h ∗ , A 

∗ is character- 

istic area and A 

∗ = WB (1- a / W ) m for crack components, W and B are 

width and thickness of crack specimen respectively, h ∗ is characteris- 

tic displacement and h ∗ = W, m is effective volume reduction coefficient 

related to crack length a of specimen, the aim of which is to make 

all the P /( KA 

∗ )- h p / h 
∗ curves with different crack lengths normalized. 

P is loading force of specimen, which can be given by differentiating 

Eq. (4) 

𝑃 = 

𝜕 𝑈 𝑝 

𝜕 ℎ 𝑝 
(5) 

It’s assumed that plastic effective volume and plastic equivalent 

strain can be given as 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝑉 𝑝 

𝑉 ∗ 
= 𝑘 1 

( 

ℎ 𝑝 

ℎ ∗ 

) 𝑘 2 

𝜀 𝑝 −eqm = 𝑘 3 

(
ℎ 𝑝 

ℎ ∗ 

)𝑘 4 
(6) 

where k 1 and k 2 are plastic effective volume coefficient and plastic ef- 

fective volume exponent respectively, k 3 is equivalent plastic strain co- 

efficient and k 4 equivalent plastic strain exponent. 

Combining Eqs. (4) –(6) , we have 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑈 
𝑝 

𝑈 ∗ 
𝑝 

= 

(
ℎ 𝑝 

ℎ ∗ 

)𝑚 𝑝 +1 

𝑈 
𝑝 

𝑈 ∗ 
𝑝 

= 

( 

𝑃 

𝑃 ∗ 𝑝 

) 1∕ 𝑚 𝑝 +1 

𝑃 

𝑃 ∗ 𝑝 
= 

(
ℎ 𝑝 
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)𝑚 𝑝 

(7) 

where 𝑈 

∗ 
𝑝 
= 

𝑁𝐾 𝑉 ∗ 

𝑁+1 𝑘 1 𝑘 
1+1∕ 𝑁 

3 , 𝑚 𝑝 = 

𝑘 4 
𝑁 

+ 𝑘 4 + 𝑘 2 − 1 , 𝑃 ∗ 
𝑝 
= 

(1+ 𝑚 𝑝 ) 𝑁𝐾 𝐴 ∗ 

( 𝑁+1) 𝑘 1 𝑘 
1+1∕ 𝑁 

3 . 

Analogously, the relations of P –h e , U e –P and U e –h e for linear elastic 

deformation of materials can be given as 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑈 𝑒 

𝑈 ∗ 𝑒 
= 

(
ℎ 𝑒 

ℎ ∗ 

)2 

𝑈 𝑒 

𝑈 ∗ 𝑒 
= 

(
𝑃 

𝑃 ∗ 𝑒 

)2 

𝑃 

𝑃 ∗ 𝑒 
= 

(
ℎ 𝑒 
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) (8) 

where 𝑈 

∗ 
𝑒 
= 

𝑘 5 𝐸 𝑉 
∗ 

2 , 𝑃 ∗ 
𝑒 
= 𝑘 5 𝐸 𝐴 

∗ , U e is elastic strain energy, h e is elastic 

displacement. 

For elastoplastic deformation of materials, the total energy U and 

total displacement h of crack components can be obtained by the sum 

of linear elastic and fully plastic contributions. 

ℎ ( 𝑃 ) = ℎ 𝑒 ( 𝑃 ) + ℎ 𝑝 ( 𝑃 ) (9) 

𝑈 ( 𝑃 , ℎ ) = 𝑈 𝑒 ( 𝑃 , ℎ 𝑒 ) + 𝑈 𝑝 ( 𝑃 , ℎ 𝑝 ) (10) 

According to Eq. (9) , the P –h relation of elastoplastic deformation of 

specimen can be written as ( 

𝑃 

𝑃 ∗ 
𝑝 

) 

1 
𝑚 𝑝 

+ 

𝑃 

𝑃 ∗ 
𝑒 

= 

ℎ 

ℎ ∗ 
(11) 

The dimensionless form of the above equation can be written as 

( 𝑏 1 
𝑃 

𝑃 ∗ 
) 

1 
𝑚 𝑝 + 𝑏 2 

𝑃 

𝑃 ∗ 
= 

ℎ 

ℎ ∗ 
(12) 

where ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑃 ∗ = 

√ 

𝑃 ∗ 
𝑝 
𝑃 ∗ 
𝑒 

𝑏 1 = 

( √ 

𝑃 ∗ 𝑒 
𝑃 ∗ 𝑝 

) 

𝑏 2 = 

√ 

𝑃 ∗ 𝑝 
𝑃 ∗ 𝑒 

(13) 

Based on the energy definition of J integral, Eq. (14) , proposed by 

Rice [33] , the J integral of a specimen can be expressed as follows 

𝐽 = 𝐽 𝑒 + 𝐽 𝑃 = − 

𝜕𝑈 

𝐵 𝜕 𝑎 
(14) 

𝐽 = 

(
1 − 

𝑎 

𝑊 

)𝑚 −1 ⎡ ⎢ ⎢ ⎣ 𝑏 3 
( 

𝑃 

𝑃 ∗ 
𝑝 

) 𝑏 4 

+ 𝑏 5 

( 

𝑃 

𝑃 ∗ 
𝑒 

) 2 ⎤ ⎥ ⎥ ⎦ (15) 
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