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ABSTRACT

Four kinds of configurations represented by compact tension (CT) specimen, single edge-notched bending (SEB)
specimen, single edge-notched tension (SET) specimen and C-shaped inside edge-notched tension (CIET) specimen
were simulated by ANSYS 14.5 under plane strain conditions and three dimension (3D) conditions for determining
the parameters of load-displacement, J integral-load etc. semi-analytical expressions. And a novel semi-analytical
method is proposed to obtain J resistance curves of ductile materials on the basis of equivalent energy principle.
In order to examine the validity of semi-analytical expressions, the fundamental curves (e.g., load-displacement,
J integral-load curves etc.) predicted by the expressions were compared with the curves obtained from finite
element analysis (FEA). It can be observed that they agree well with each other. Moreover, the real-time crack
length and J integral of growing cracked specimen at arbitrary loading points can be determined through solving
the explicit expressions. And a corrected formula of J integral was obtained in order to consider the influence of
crack growth of sharp cracked specimen. Further, the J resistance curves of Cr2Ni2MoV for CT specimens and
26NiCrMoV11-5 for CIET specimens were successfully obtained via the new method, which show good agreement
with the results determined by traditional normalization method. And the crack lengths predicted by the method
match with those obtained by physical measurement on the fracture surface of specimens. Meanwhile, the critical

Jc which represents the sharp cracked specimen beginning to growth can also be easily determined.

1. Introduction

The fracture toughness measurement of ductile material plays a key
role in safety assessment of structures, the key point of which is to
measure the J integral of crack components. The theoretical concept
of J integral was developed in 1967 by Cherepanov [1] and in 1968
by Rice [2] independently, and it was latterly proved by Hutchinson
[3], Rice and Rosengren [4] that the J integral can represent the inten-
sity of stress-strain field around the crack tip of crack components for
elasto-plastic materials, named HRR field. In 1972, Begley and Landes
[5] proved that J integral can be taken as a control parameter to char-
acterize the quasi-static fracture behaviors of ductile materials. Further,
Shih and Hutchinson [6,7] obtained the numerical fully-plastic expres-
sions of load-plastic displacement (P-h,) relation and plastic J integral-
load (JP—P) relation etc. for different configurations based on refined
finite element analysis (FEA) [8-10] in 1976, and an engineering ap-
proach for elastic-plastic fracture analysis was proposed at the same
time. Based on the research findings of Shih and Hutchinson [6,71,
Kumar et al. [11] wrote an elastic-plastic fracture mechanics manual,
named EPRI manual. The manual gave a feasibility for elasto-plastic
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safety assessment of crack components, but all the elastic-plastic equa-
tions provided in the manual are implicit, in order to obtain the J re-
sistance curves of materials, a mass of computations are required in or-
der to obtain the crack driving force diagram via the tables given in
the manual. Furthermore, the EPRI method didn’t consider the influ-
ence of crack growth of sharp cracked specimen. Analogous, Qian et al.
[12,13] proposed a hybrid method to obtain the J resistance curves of
ductile materials by combining experiments and finite element analyses,
but it has the similar drawbacks with EPRI method. Until now, it’s still a
difficult process to obtain the J resistance curves of ductile materials the-
oretically, so the experimental methods such as unloading compliance
method (UCM) [14,15], normalization method (NM) [16-18], and sepa-
rable Spb method (SSM) [19,20] are widely used. However, the accurate
measurement of real-time crack length of growing cracked specimen by
these experimental methods is still difficult. For examples, the unloading
compliance is sensitive to the crack length of growing cracked specimen
in the UCM, which usually causes more deviations in predicting the real-
time crack length; the NM requires to measure the initial crack length
and final crack length of growing cracked specimen, and the form of
deformation function is determined empirically in order to obtain the
real-time crack length of specimen; in SSM, the choice of reference blunt
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cracked specimen severely effect on the prediction of real-time crack
length of growing cracked specimen. Additionally, the aforementioned
experimental methods must determine the plastic factor #,, first in order
to obtain the J integral of specimen. According to the research findings
of Ernst and Paris [21], p is inexistent when the assumption of load
separation principle cannot be met. Generally speaking, two methods
represented by plastic work method [22] and load separation method
[23] are usually used to obtain the plastic factor fps and the np is consid-
ered as a function only related to the crack length of specimen. However,
Donato and Ruggieri [24] and Huang et al. [25] analyzed the value of fp
for SEB specimens by FEA, the results indicated that #, is related to not
only crack length but also material properties and loading force. Simi-
lar conclusions were obtained by Cravero and Ruggieri [26], Ruggieri
[27] and Huang and Zhou [28] based on their research findings of fp
for SET specimens. Consequently, the J resistance curves of ductile ma-
terials obtained by traditional experimental methods are approximate
results.

In this paper, several elasto-plastic semi-analytical expressions of
load-displacement, energy-load and J integral-load relations are ob-
tained on the basis of Chen-Cai equivalent energy principle [29-31].
The validity checks of these formulas were performed by FEA. Finally,
a novel method is applied to obtain the J resistance curves of ductile
materials by compact tension (CT) specimen and C-shaped inside edge-
notched tension (CIET) specimen [32].

2. The theoretical model

Ramberg—0sgood constitutive relation is the most common model to
describe power-law hardening materials in fracture mechanics. It has a
form as

N
E=¢E, tE,= % (%)
where o represents true stress and ¢ true strain of material, respectively.
€, is elastic strain and ¢, plastic strain. E is elastic modulus, K strength
coefficient and N hardening exponent.

When only considering the fully plastic part of Eq. (1), the total plas-
tic strain energy U, of arbitrary deformation body can be given as

U,= /// Up_eq(X, ¥, 2)dxdydz = u, o,V
Q

where Q is effective deformed zone of deformation body, u,_¢q is equiv-
alent plastic strain energy density of representative volume element
(RVE) at arbitrary point (x, y, 2) in the deformed zone, vy is effective
deformed volume of Q, u;,_oqy, is RVE’s plastic strain energy density at
energy center & (Xg, ¥, 2¢), and it can be written as
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where h, represents fully plastic displacement. Further, the total plastic
strain energy U, is expressed as [30]

NK i/N+1 _ NKV* Vp 1/n+1
PTN+1 PEp—eqm = N +1 ngfeqm
in which V * is characteristic volume and V * =A*h*, A* is character-
istic area and A* = WB(1-a/W)™ for crack components, W and B are
width and thickness of crack specimen respectively, h* is characteris-
tic displacement and h* = W, m is effective volume reduction coefficient
related to crack length a of specimen, the aim of which is to make
all the P/(KA*)-hp/h*curves with different crack lengths normalized.
P is loading force of specimen, which can be given by differentiating

Eq. (4)
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It’s assumed that plastic effective volume and plastic equivalent
strain can be given as

k
V()"
ve =kl

hy \ k4
Ep—e:qm = kS(h_i)

where k; and k, are plastic effective volume coefficient and plastic ef-
fective volume exponent respectively, k; is equivalent plastic strain co-
efficient and k4 equivalent plastic strain exponent.

Combining Egs. (4)-(6), we have
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Analogously, the relations of P-h,, U,~P and U,-h, for linear elastic
deformation of materials can be given as

Ue _ (h_)2
[
Ue _(2Y
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where U} =
displacement.

For elastoplastic deformation of materials, the total energy U and

total displacement h of crack components can be obtained by the sum
of linear elastic and fully plastic contributions.

®

ksEV*

>—> P) = ksEA", U, is elastic strain energy, h, is elastic

h(P) = h,(P) + h,(P) (O]

U(P, h)=U,(P, h,) +U,(P, hy,) (10)

According to Eq. (9), the P-h relation of elastoplastic deformation of
specimen can be written as

1

P\, P _h
P Pr T h*

The dimensionless form of the above equation can be written as

an
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Based on the energy definition of J integral, Eq. (14), proposed by
Rice [33], the J integral of a specimen can be expressed as follows

oU
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