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A B S T R A C T

An accurate and efficient gradient weighted finite element method (GW-FEM) is developed for linear elastic, free
vibration and material nonlinear analyses. The new approach is based on the triangular and tetrahedral elements
that can be generated automatically for any complicated geometries in 2D and 3D spaces. Shepard interpolation
technique (SIT) is used to formulate the weighted gradient field considering the effect of the element itself
and its adjacent elements sharing common edges (2D) or faces (3D). Due to the simple formulations, the SIT is
easily implemented and coded in constructing the weighted gradient field. Both of the linear elastic and work-
hardening-based elastic–plastic material models are incorporated in the GW-FEM for the linear and nonlinear
analyses. The GW-FEM is then coupled with the total strain theory and projection method to solve the nonlinear
elastic–plastic problem. Our numerical examples, including both of benchmark and practical engineering cases,
reveal that GW-FEM provides superior performance in accuracy and efficiency, compared to the standard finite
element method.

1. Introduction

Static, free vibration and elastic–plastic analyses of solid mechanics
are commonly encountered by researchers in mechanical, civil and
aerospace engineering. As the analytical solutions are only available for
problems with very simple geometries, various numerical algorithms,
including the finite element method (FEM) [1,2], the finite volume
method (FVM) [3–5], the meshless finite element method (MFEM) [6–
8], the boundary element method (BEM) [9–11] etc., have already been
devised to simulate these behaviors in the past decades. Among these
different methodologies, the finite element method is still so far the most
popular and versatile tool.

The salient feature of FEM is that it enables continuums to be
computed with ease by discretizing them into a finite number of
elements. In engineering applications, researchers often resort to the
quadrilateral and hexahedron elements that provide reliable results.
However, the traditional quadrilateral and hexahedron elements have
inherent shortcomings [12]: (1) the computation cost is enormous since
the high-order interpolation and multiple integration points are required
in each element, (2) the high demands for the shapes of element, such
as positive Jacobian and ideal interior angles (all less than 180◦), make
it limited for practical application. Although the linear triangular and
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tetrahedral elements are simplistic and convenient for dealing with the
problems with complex geometries, they often suffer from the well-
known low accuracy deficiency. Recently, numerous algorithms have
been introduced into the traditional FEM to enhance its performance,
such as natural element method (NEM) [13], linear six-node ‘‘Triprism’’
element [14,15], central point-based discrete shear gap method (CP-
DSG3) [16], partition of unity method (PUM) [17], and reproducing
kernel approximation [18,19] and so on. These algorithms, providing
local but continuous approximation functions, enjoy several advantages
as compared to the standard FEM, especially for improving computa-
tional efficiency and accuracy. However, there are still several common
problems have to be addressed urgently, e.g., distorted meshes.

To overcome these drawbacks, a group of smoothed finite ele-
ment methods (S-FEM) [20–24] were presented based on the gradient
smoothing technique [25,26]. The node-based smoothed finite element
methods (NS-FEM) [27,28] were developed in the frame of FEM. Feng
et al. studied the static and dynamic analysis of Timoshenko beam [29]
using the NS-FEM and developed a stable node-based smoothed finite
element method (SNS-FEM) [27] to address the non-zero energy spu-
rious modes [30] accompanying with NS-FEM. In order to eradicate
the overly-soft behavior of NS-FEM, the edge-based smoothed finite
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element (ES-FEM) [30–34] is formulated for 2D analyses. It indicated
the excellent performances in dealing with the solid mechanics [35],
acoustic [36–38], crack growth [39,40], heat transfer [41,42] problems.
The face-based smoothed finite element method (FS-FEM) [43] was also
developed for the analyses of 3D problems, including geometrically
non-linear solid mechanics [44] and visco-elastoplastic analyses [45].
However, the constructions of smoothed strain matrices using both ES-
FEM and FS-FEM were laborious and cost a mass of physical memories.

Following the fundamental works mentioned above, a gradient
weighted finite element method (GW-FEM) that combines the Shepard
interpolation technique (SIT) and linear shape function is developed
for the analyses of 2D and 3D solid mechanics. We use the three-
node triangular or four-node tetrahedral elements that can be generated
automatically for any complicated geometries to discretize the problem
domain. For each independent element, a compacted supported domain
is further formed based on the element itself and its adjacent elements
sharing common edges/faces. Consider the advantages of a simple form
in formulating the weighted function and of the resulting computing
effectiveness, we use the SIT to construct the weighted gradient field.
Then we compose the discretized system of equations based on the
generalized Galerkin weak form. Our numerical examples, including
both benchmark cases and practical engineering problems, demonstrate
that the present method possesses superior performance compared to
the standard FEM for linear and nonlinear problems, and is suitable for
engineering application even with coarse mesh.

2. Basic equations for standard FEM

A 3D static elasticity problem is described using the following
equilibrium equation in domain 𝛺 bounded by 𝛤

𝐋T𝝈 + 𝐛 = 𝟎 𝑖𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑑𝑜𝑚𝑎𝑖𝑛 𝛺, (1)

where 𝜎T = {𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑧𝑥} is the stress vector, 𝐛T = {𝑏𝑥 𝑏𝑦 𝑏𝑧}
denotes the body force vector, L is the differential operator that can be
written as
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The constitutive equation and the relationship between strain and
displacement are given by

𝝈 = 𝐃𝜺, (3)
𝜺 = 𝐋𝐮, (4)

where D is the constitutive matrix. For the homogeneous materials, it
can be expressed in terms of Young’s modulus E and Poisson ratio v as
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Boundary conditions of the problem domain 𝛺 are given as follows

𝐮 = 𝐮 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝛤𝑢, (6)
𝝈 ⋅ 𝐧 = 𝐭 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝛤𝑡, (7)

where 𝐮 and 𝐭 are the prescribed displacement on the essential bound-
aries and traction on the natural boundaries, respectively, n is the vector
of unit outward normal.

3. The idea and formulation of the presented algorithm

In this section, the gradient weighted formulation is described in
detail. The problem domain is discretized into tetrahedral (or triangular
for 2D space) elements for 3D space, as in the standard FEM. Upon the
gradient weighted operation, the gradient field is formed by taking the
element itself and its adjacent elements sharing common edges/faces
into account.

3.1. Fundamental of gradient weighted operation

We briefly introduce the Shepard interpolation method/SIT [46,47]
in this subsection. Given a problem domain 𝛺 with the function F (x),
we decompose the problem domain 𝛺 into n non-overlapping patches
𝛺𝑖, satisfying ∪𝑛

𝑖=1𝛺𝑖 = 𝛺 and 𝛺𝑖 ∩ 𝛺𝑗 = 𝛷 (𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, 2,… , 𝑛). The
gradients of each associated patches are defined as 𝑓𝑖 (𝑖 = 1, 2,… , 𝑛),
then the interpolation scheme proposed by Shepard can be expressed as

𝐹 (𝐱) =
𝑛
∑

𝑖=1
𝑤𝑖 (𝐱) 𝑓𝑖, (8)

where the normalized weight function 𝑤𝑖 (𝐱) has the following form

𝑤𝑖 (𝐱) =
𝐷𝑖 (𝐱)

∑𝑛
𝑗 𝐷𝑗 (𝐱)

, (9)

𝐷𝑖(x), a singular function at coordinate x, can be expressed as

𝐷𝑖(𝐱) = 𝛼𝑖𝜑𝑖, (10)

in which, 𝛼𝑖 represents the weighting coefficient, 𝜑𝑖 represents the area
for 2D space and volume for 3D space of patch i.

3.2. Reconstruction of the strain field using the gradient-weighted technique

As the problem domain is first discretized into a set of tetrahedron
elements, the field variables u within each element are interpolated
using the nodal displacements at the nodes of element through the linear
shape functions in the following form

𝐮 =
𝑚
∑

𝑖=1
𝜱𝑖 (𝐱)𝐝𝑖 = 𝜱𝐝𝑒, (11)

in which, 𝜱 = [𝜱𝟏 𝜱𝟐 𝜱𝟑 𝜱𝟒] is the vector of element shape function,
𝐝T𝑒 = [𝐝1 𝐝2 𝐝3 𝐝4] represents element displacement vector, m is the
number of nodes of each element.

Substituting Eq. (11) into Eq. (4), the strain of each independent
element can be obtained as follows

𝜺𝑒 =
𝑚
∑

𝑖=1
𝐁𝑒
𝑖𝐝𝑖, (12)

with

𝐁𝑒
𝑖 =

[
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]T, for 2D space (13a)
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[
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]T, for 3D space (13b)

For GW-FEM, both element itself and its adjacent elements are used
to construct the strain field of each independent element with the help
of Shepard interpolation function. Fig. 1 shows the schematic of part
of a typical operation field. For the sake of simplicity, we define the
domain (𝛺𝑒

𝐴𝐵𝐶𝐷) as the master element, and its neighboring elements
(𝛺𝑒

𝐴𝐵𝐷𝑘1, 𝛺
𝑒
𝐴𝐵𝐶𝑘2, 𝛺

𝑒
𝐵𝐷𝐶𝑘3, 𝛺

𝑒
𝐴𝐶𝐷𝑘4) sharing common faces are defined

as adjacent elements. All these elements that are identically expressed
as 𝛺𝑒

𝑖 (𝑖 = 1 ∼ 5) compose a compacted supported domain.
In this approach, the gradient weighted operation is applied to the

compacted supported domain on the strain vector 𝜺. Based on the SIT
mentioned in Section 3.1, the weighted strain vector of the eth element
can be expressed as

𝜺̃𝑒 =
𝑛
∑

𝑗=1

[

𝜔𝑗 (𝑢) ⋅ 𝜺𝑒𝑗
]

, (14)
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