Contents lists available at ScienceDirect

### Mechanism and Machine Theory

journal homepage: www.elsevier.com/locate/mechmachtheory

Research paper

# Design, analysis, and experimental validation of an active constant-force system based on a low-stiffness mechanism

Zhen Liu\*, Fuliang Niu, Haibo Gao, Haitao Yu, Liang Ding, Nan Li, Zongquan Deng

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China

#### ARTICLE INFO

Article history: Received 26 April 2018 Revised 11 July 2018 Accepted 26 July 2018

Keywords: Constant-force mechanism Low-stiffness mechanism Constant-force system Gravity compensation system

#### ABSTRACT

In low-gravity suspension simulation experiments, the partial gravitational forces of tested objects are balanced by the constant vertical forces on cables generated by constant-force systems. To improve system robustness against external payload disturbance, such systems usually employ low-stiffness mechanisms. The schematic diagram of our proposed low-stiffness mechanism is derived from an energy approach, which is especially preferable when the low-stiffness mechanism comprises two kinds of elastic components. The mechanism uses a combination of an axially arranged torsion bar and a group of radially arranged springs. While the former exhibits high energy density and generates major output force, the latter offers a negative stiffness to shape the output force curve so that it resembles a constant one. The mechanism has a comparatively smaller overall size, lower stiffness, and wider adjustable force range. The low-stiffness mechanism is used to form an active constant-force system. The system, as well as its dynamic model and controller, are also detailed in this paper. Experimental results demonstrate that the active constant-force system can be robustly controlled by a proportional-derivative controller with incomplete derivation to generate a high-accuracy dynamic force.

© 2018 Elsevier Ltd. All rights reserved.

#### 1. Introduction

One of the most significant current discussions in astronaut training and spacecraft reliability assessment is the ground simulation of a low-gravity environment on the planet's surface [1, 2]. An alternative method for the simulation is using slings to apply vertical forces on tested objects to compensate for their partial gravity [3, 4]. Such a method usually consists of a horizontal position tracking system maintaining the sling vertical and a constant-force system keeping the sling force constant. The performance of a constant-force system is a key factor to ensure high-fidelity simulation. Two requirements for constant-force systems are high steady-state force accuracy and excellent dynamic response.

Currently, research results regarding to constant-force systems can be classified into passive constant-force systems and active constant-force systems (ACFSs). Passive constant-force systems are generally classified in terms of compensation components into two types: counterweights [5–7] and buffer springs [8–10]. They are simple in structure; however, the counterweight inertia and spring deformation significantly affect the force accuracy and dynamic characteristics. Consequently, they are suitable for low-speed or low-force accuracy applications. ACFSs are divided on the basis of drive source and composition

https://doi.org/10.1016/j.mechmachtheory.2018.07.019 0094-114X/© 2018 Elsevier Ltd. All rights reserved.







<sup>\*</sup> Corresponding author. *E-mail address:* zhenliu.hit@gmail.com (Z. Liu).

### Nomenclature

| L                                   | Lagrangian operator (J)                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|
| V <sub>LSM</sub>                    | Elastic potential energy of LSM (J)                                                                         |
| q                                   | Generalised degree of freedom and angle between input and output terminals of low-                          |
|                                     | stiffness mechanism (LSM) (°)                                                                               |
| Q(q)                                | Generalised force (N m)                                                                                     |
| С                                   | Stored elastic energy at initial working point (J)                                                          |
| Q <sub>C</sub>                      | Setting generalised force (N m)                                                                             |
| Τ'                                  | Torsional stiffness of torsion bar (N m/°)                                                                  |
| $q_{\rm st}$                        | Initial angle of torsion bar (°)                                                                            |
| V <sub>tor</sub> , V <sub>spr</sub> | Elastic potential energy of torsion bar and compressed spring (J)                                           |
| V <sub>ACFS</sub>                   | Elastic potential energy of ACFS (J)                                                                        |
| V <sub>rem</sub>                    | Elastic potential energy of elastic elements except torsion bar (J)                                         |
| V <sub>rmax</sub>                   | Maximum elastic potential energy of elastic elements except torsion bar (J)                                 |
| <i>C</i> <sub>1</sub>               | Initial elastic potential energy of elastic elements except torsion bar (J)                                 |
| $q_{\max(V_{\text{rem}})}$          | Angle under the maximum elastic potential energy of remaining elastic elements ( $^{\circ}$ )               |
| $q_{ m H}$                          | Maximum angle of one side of the initial position of LSM(°)                                                 |
| T <sub>EACFS</sub>                  | Torque error function of ACFS (N m)                                                                         |
| F <sub>E<sub>ACFS</sub></sub>       | Force error function of ACFS (N)                                                                            |
| K <sub>ACFS</sub>                   | Equivalent stiffness of LSM and ACFS (N/mm)                                                                 |
| d                                   | Torsion bar diameter (mm)                                                                                   |
| L <sub>tor</sub>                    | Torsion bar length (mm)                                                                                     |
| k                                   | Stiffness of compressed spring (N/mm)                                                                       |
| $l_0, l_{st}$                       | Rest and installed lengths of compressed spring (mm)                                                        |
| Fpre                                | Preload of compressed springs (N)                                                                           |
| l(q)                                | Length function of compressed spring (mm)                                                                   |
| е                                   | Distance from outer joint of compressed spring to rotation axis of LSM (mm)                                 |
| r                                   | Distance from inner joint of compressed spring to rotation axis of LSM (locking bar with                    |
|                                     | constant length) (mm)                                                                                       |
| $\alpha(q)$                         | Angle function between compressed spring axis and locking bar direction (°)                                 |
| F <sub>spr</sub>                    | Force of compressed spring (N)                                                                              |
| R                                   | Reel radius (mm)                                                                                            |
| τ                                   | Motor torque (N m)                                                                                          |
| $J_1$                               | Equivalent moment of inertia of motor shaft, brake, reducer, and input terminal of LSM $(ka, cm^2)$         |
| I                                   | (kg cm <sup>2</sup> ) Equivalent moment of inertia of reel and output terminal of LSM (kg cm <sup>2</sup> ) |
|                                     | Moment of inertia of motor, brake reducer and coupling $(kg \text{ cm}^2)$                                  |
| Jmotor, Jbrake, Jreducer, Jcoupling | Transmission ratio                                                                                          |
| l<br>I.                             | Faujualent moment of inertia of input terminal of LSM ( $k\alpha$ cm <sup>2</sup> )                         |
| Jin                                 | Equivalent homent of mertia of input terminal of Esw (kg cm )                                               |
| $\mu_1$                             | ISM (N s/mm)                                                                                                |
| 11.2                                | Equivalent viscous friction coefficient between input and output terminals of LSM                           |
| <i>p</i> ~2                         | (N s/mm)                                                                                                    |
| 11.2                                | Equivalent viscous friction coefficient between output terminal of LSM and support                          |
| μ3                                  | (N s/mm)                                                                                                    |
| θ.                                  | Rotation angle of input terminal of LSM (°) (Positive direction is clockwise viewed from                    |
| σŢ                                  | the motor to the LSM)                                                                                       |
| <i>A</i> <sub>2</sub>               | Rotation angle of output terminal of ISM (°) (Direction is the same as $\theta_1$ )                         |
|                                     | Actual torque of LSM (N m)                                                                                  |
| FLOM                                | Actual force of LSM (N)                                                                                     |
| F <sub>ct</sub>                     | Required force of LSM (N)                                                                                   |
| F                                   | Sling force (N)                                                                                             |
| -<br>F_                             | Sling force error (N)                                                                                       |
| $f^{\Delta}$                        | Friction force (N)                                                                                          |
| ,<br>F <sub>C</sub>                 | Coulomb friction force (N)                                                                                  |
| v                                   | Relative sliding velocity (m/s)                                                                             |
| μ                                   | Viscous friction coefficient (N s/mm)                                                                       |
| r ·                                 | (                                                                                                           |

Download English Version:

## https://daneshyari.com/en/article/8947706

Download Persian Version:

https://daneshyari.com/article/8947706

Daneshyari.com