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In this study the dynamic stability of viscoelastic functionally graded cylindrical shells (VEFGCSs) under an axial
load with different initial conditions is investigated. Mathematical models are constructed for the problem of
dynamic stability of the VEFGCSs, which is characterized simultaneously by taking into account both viscoelastic
and FGM features. The basic equations of VEFGCSs are described by integro-differential equations using the
linear viscoelasticity theory. An approach is developed to the determination of the critical times (CTs) for

VEFGCSs with different initial conditions. Finally, the numerical analyzes are performed to demonstrate the
influences of the initial conditions, the FGM profiles and the rheological parameter on the critical times for
various geometric characteristics of the cylindrical shells.

1. Introduction

The main problems in the field of science and technology are related
to the analysis of the vibration and stability of viscoelastic structures
because of their wide range of applications. In the mathematical
modeling of processes occurring in viscoelastic materials, there is a so-
called memory system whose behavior depends on the entire history of
this system, which is not yet fully defined and therefore describes the
integro-differential equation as a function of time. In the studies, the
inherited theory of viscoelasticity, constructed on the basis of the
Boltzmann superposition principle, is used as a theory describing the
time-dependent processes of deformation. For this reason, a number of
fundamental research and monographs devoted to the theory of creep
and the theory of viscoelasticity have been published [1-7]. When
calculating structures for strength and stability, it is essential to take
into account the viscoelastic properties of deformable bodies, which
leads to the appearance of additional integral terms in the differential
equations. In light of basic information on the viscoelastic materials,
many publications on the vibration and stability of structural elements
consisting of these materials have been published, from the first period
of research to the present day. Among these publications there are some
precious publications [8-25].

The FGMs belong to the class of special composite materials ob-
tained by combining two or more composite phases with continuous
distribution in the preferred orientation. The changes in the composi-
tion of the components lead to an inhomogeneous microstructure that
causes gradual changes in the properties of the macroscopic material.
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This important property can improve the thermal properties, eliminate
the stress singularity, increase the fracture toughness and prevent
stratification with the conventional composites. The gradual changes in
the properties of the material make it possible to obtain the desired
properties for various applications. Advantages of FGM in comparison
with traditional materials show that they have a great potential in
aerospace structures, nuclear facilities, medical implants and many
other fields of engineering [26-31]. Recently, some remarkable studies
have been performed describing the distribution of volume fractions
and features of FGMs [32-37]. FGMs can be ideal when operating
conditions are severe, for example, components of thermal engines or
thermal shields of missiles. Under these conditions, FGMs may exhibit
time-dependent behavior. Full use of the potential of FGM requires the
development of appropriate methodology modeling. A simple but rea-
listic phenomenological model for describing the time-dependent be-
havior is the linear viscoelasticity [38]. In recent years, some studies
have been carried out on the theory of viscoelasticity for FG viscoelastic
structural elements, among which we note papers [39-44].

Some studies have been carried out in recent years about the be-
havior of plates and shells made of viscoelastic FG materials. Within
these studies, the number of publications devoted to behavior of the
VEFGCSs is limited. Mao et al. [45] studied the flexural creep and post-
buckling analysis of laminated piezoelectric viscoelastic FG plates
(VEFGPs) taking into account the SDT and the geometric nonlinearity of
von Karman. Shariyat and Alipor [46] developed a series of solutions
for free vibration and damping analyzes of VEFGPs with variable
thickness on the elastic bases. Shariyat and Nasab [47] studied the low-
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speed effect of general VEFGPs, taking into account the determination
of the apparent stiffness of the contact area and the change in the Hertz
contact law. Barretta et al. [48] investigated torsion of FG nonlocal
viscoelastic circular nanobeams and developed an effective solution
procedure based on the Laplace transformation, providing a new cor-
respondence principle in nonlocal viscoelasticity for FGMs. Yang et al.
[49] provided a unified, but accurate solution for the analysis of vi-
bration and damping of VEFGPs with arbitrary boundary conditions.
Deng et al. [50] developed a hybrid method that combines the re-
verberation ray array method and the wave propagation method to
study the stability of multi-span, viscoelastic FGM tubes transporting
liquid. Paland and Alibeiglo [51] investigated the static and vibrational
analysis of a sandwich-cylindrical shell with a FG core and a viscoe-
lastic interface using DQM. Swain and Roy [52] formulated an eight-
node shell element with five degrees of freedom for a node to study the
damping characteristics of the oscillations of spherical shells made by
CNT-CFRP-2DWF composites, based on the SDT in accordance with the
Mindlin hypothesis and Koiter shell theory. Sofiyev [53] presented the
solution of the dynamic stability of heterogeneous orthotropic visco-
elastic cylindrical shells based on the CST.

Most of the above studies are based on numerical methods, their use
is more labor-intensive, and they are also less effective for visualization
for the determination of the critical time. The objective of the present
work is to the study dynamic stability of VEFGCSs under an axial load,
with two initial conditions. The basic equations of VEFGCSs are de-
scribed by integro-differential equations using the linear viscoelasticity
theory. An analytical approach is developed to determination of the
critical time for VEFGCSs. Finally, are used the various FGM profiles to
demonstrate the influences of material gradient, initial conditions, shell
characteristics and rheological parameter on the CT.

2. Mathematical modeling of the problem
2.1. Material constitutive relations

We shall assume that the VEFGCS with the radius R, length L and
thickness h, subjected to a uniform axial compression of magnitude P,
which is less than the elastic critical load E,. (See, Fig. 1). We shall use
the orthogonal system of coordinates usual for cylindrical shells; X, %
and x; axes are in the axial, circumferential, and inward radial direc-
tions, respectively. We shall designate the displacements; u; is the di-
rection of the generatrix, u, is a circular displacement, and u; is a radial
displacement. In addition, we assume that the stresses acting normally
to the reference surface are negligibly small in comparison with the
other components.

The volume fractions of FGMs are defined by the power-law func-
tion, as [31]:

Ve(X3) = (X + 0.5)%, Ve(X3) + Vi (6) = 1, X3 = x3/h M

where V},,(X;) and V,(X;) are the volume fractions of the metal and the

Fig. 1. The VEFGCS subjected to an axial load and notations.
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ceramics phases, respectively, d is the volume fraction index,
0<d< oo

Pitakthapanaphong and Busso [28] proposed an inverse quadratic
form for the volume fractions of the FGM as

Ve(Xs) =1 - (0.5 — X3)° (2)
The effective material properties F; are defined as [31].
Fr=FRT'F1+ F+ RTE + R{RTF + {,T°F 3)

Where Fj, j= -1, 0, 1, 2, 3 are the coefficients of temperature T (K)
and are unique to the constituent materials.

The effective properties of FGMs are usually taken according to the
rule of the mixture of materials and are expressed as follows:

F = EVu(X3) + EV.(X) 4

where F, F, and F. are the generic material property, the properties of
metal and ceramics, respectively [31,32].

According to Egs. (1) and (4), the effective Young's modulus, Pois-
son's ratio and density of FGMs are obtained as follows:

Efg(XS) = (Ec - Em)Vc(X3) + Ep,
Pfg(Xs) = (o, — p)Ve(3) + 0o,

Vfg(XS) = (Vc - Vm)Vc(-XF;) + Vm,

5)
where E,,, E. , Vm, v and p,, @, are the Young's modulus, Poisson's
ratio and density of the metal and ceramic surfaces of FGMs, respec-
tively.

From Eq. (5) it can be seen that the effective material properties of
the ceramic-rich shells, when V.(X;) =1 and the effective material
properties of metal-rich shells, when V,(X;) = 0 are obtained. Detailed
explanations and interpretations of FG profiles are presented in the
study of Tornabene et al. [29,32,33,35,36].

Jin and Batra [30] proposed a different kind of FGMs that the ma-
terial properties continuously change along the thickness directions

according to the exponential law:
Efg(Xg) — Eme(X3+O‘5)1n<EC/Em), ()(3) = .Ume(X3+0A5)ln(1/c/1/m)’

Prg X3) = o e(%+0.5)In(vc/vm)

‘Vfg

©
2.2. Basic relations and equations
In the given coordinate system, the constitutive relations of the

VEFGCSs based on the linear theory of viscoelasticity can be presented
in the form [4,33,39]:

= B 10 4y el —x +v
LR Tg “x2 3 ax2 fg X22
_t 0 0 _ 32“3 R (t _ ) d
S e +vgen — X3 2 vfg dxz 7)dt
0
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3% 9%
-f [s,?z + v el — x3( Bxl:; + v 3”23 ]R(t - r)dr}
0
t
_ B | o _ o%u3 _ 6%u3 _
Oxix; = 2(1+Vfg)[ Ve, — 2% 31612 f me 2x3 o R(t — 7)dr
@)
where ¢ , €2, yflxz are the strains in the reference surface and

R(t — 1) is the relaxation kernel of the integral operator.
The stresses resultants and the stress couples are defined from the
following relations [4]:
h/2
(ny, myp) = [ o1, x5]dxs,
—h/2

@)=

(a5 %)

(8
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