ARTICLE IN PRESS

Tetrahedron Letters xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Tetrahedron Letters

Ligusaginoids A–D, four eremophilane-type sesquiterpenoid dimers and trimers from *Ligularia sagitta*

Hang-Ying Li, Zai-Qin Zheng, Wen-Jun Wei, Jian-Jun Chen*, Kun Gao*

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China

ARTICLE INFO

Article history: Received 12 July 2018 Revised 27 July 2018 Accepted 2 August 2018 Available online xxxx

Keywords: Ligularia sagitta Eremophilane Sesquiterpenoid Structure determination Antibacterial activities

Introduction

Ligularia sagitta, belonging to the genus *Ligularia* of the family Compositae, is a traditional herbal medicine in China. It has been used to treat inflammation, eliminate phlegm, suppress cough, relieve pain, and stimulate blood flow [1]. Phytochemical investigations suggested that *L. sagitta* contained high level eremophilanetype sesquiterpenoids [2–4], which exhibit diverse biological activities, such as anticancer, anti-inflammatory, antiviral, antibacterial, antidiabetic and phytogrowth-inhibitory activities [5–10].

Our research on chemical constituents of *L. sagitta* collected from Gansu Province in China has led to the isolation of a series of eremophilane-type sesquiterpenoids with a novel carbon skeleton [11]. Motivated by a search for natural products of new structures and biological activities, the aerial parts of *L. sagitta* collected from Sichuan Province were targeted and afforded four unprecedented highly oxygenated eremophilane-type sesquiterpenoid dimers (1 and 2) and trimers (3 and 4) (Fig. 1) characterized with the 6/6/5/5 polycyclic skeleton. Here, we report the isolation, structural elucidation, and biological evaluation of these compounds.

Results and discussion

The air-dried aerial parts of *L*. sagitta were extracted with MeOH to give a crude extract, which was suspended in H_2O and succes-

* Corresponding authors. E-mail addresses: chenjj@lzu.edu.cn (J.-J. Chen), npchem@lzu.edu.cn (K. Gao).

https://doi.org/10.1016/j.tetlet.2018.08.009 0040-4039/© 2018 Elsevier Ltd. All rights reserved.

ABSTRACT

Four novel highly oxygenated eremophilane-type sesquiterpenoid dimers and trimers with the unique 6/6/5/5 polycyclic skeleton, designated as ligusaginoids A–D (1–4), were isolated from the aerial parts of *Ligularia sagitta*. Their structures with absolute configurations were determined by a combined method. Moreover, a plausible biosynthetic pathway of 1–4 was also proposed. These compounds showed weak antibacterial activities.

© 2018 Elsevier Ltd. All rights reserved.

sively partitioned with EtOAc and *n*-BuOH. The EtOAc extract was subjected to the column chromatography (CC) over silica gel, sephadex LH-20, and semi-preparative HPLC to afford ligusaginoids A–D (**1–4**).

Ligusaginoid A (1) was obtained as optically active colorless crystals (CH₃OH). Its molecular formula of C₄₃H₅₆O₁₃ was determined by the HRESIMS ion at m/z 803.3630 [M+Na]⁺ (calcd for C₄₃-H₅₆O₁₃Na, 803.3613), which required sixteen degrees of unsaturation. Its IR spectrum exhibited absorptions at 3418 and 1705 cm⁻¹, assignable to hydroxyl and carbonyl groups, respectively. The ¹H NMR spectrum showed the presence of a trisubstituted olefinic proton signal at $\delta_{\rm H}$ 6.32 (q, J = 7.6 Hz) and seven methyl signals at $\delta_{\rm H}$ 1.98 (d, J = 7.6 Hz), 1.88 (s), 1.53 (d, J = 1.6 Hz), 1.05 (d, J = 6.4 Hz), 1.04 (s), 0.87 (s), and 0.82 (d, J = 6.8 Hz). The ¹³C NMR spectrum of **1** exhibited 43 carbon signals, including three ester carbonyl carbons, three pairs of double bond carbons, four quaternary carbons, four oxygenated tertiary carbons, eight methines (six oxygenated ones), eleven methylenes (three oxygenated ones), seven methyls. Moreover, deducting six degrees of unsaturation accounted for three ester carbonyl groups and three pairs of double bonds, the remaining ten indices of hydrogen deficiency indicated that ten rings should be present in 1.

The ¹H–¹H COSY spectrum revealed two spin-coupling systems as drawn with bold bonds in Fig. 2. A further analysis of the 1D NMR spectra and ¹H–¹H COSY spectrum indicated that compound **1** contained parts I and II. In part I (in black in Fig. 1), the A, B, and C ring systems were established by the HMBC correlations of H-1 with C-5, of H₃-15 with C-5, of H-4 with C-5 and C-10, of H₃-14 with C-4, C-5, C-6, and C-10, of H-6 with C-4, C-5, C-7, and C-11,

ARTICLE IN PRESS

H.-Y. Li et al./Tetrahedron Letters xxx (2018) xxx-xxx

Fig. 1. Structures of ligusaginoids A-D (1-4).

Download English Version:

https://daneshyari.com/en/article/8948352

Download Persian Version:

https://daneshyari.com/article/8948352

Daneshyari.com