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A B S T R A C T

Dynamical evolution and electromagnetically induced transparency (EIT) is investigated here in a three-level
𝜆-type atomic system including near-dipole–dipole interaction among atoms. The system is driven by the probe
and coupling fields. Exact numerical solutions under steady-state condition are given for the density operator
equation to get information about population in various levels and the linear susceptibility of probe-transition.
Also, obtained are the closed form expressions for linear and third order non-linear susceptibilities for the probe
transition under perturbation approximation.

1. Introduction

It has been shown in the late eighties that the propagation of an
electromagnetic field with a medium composed of two-level atoms can
generate near dipole–dipole (NDD) interaction. Such NDD effects can
result in the inversion-dependent-chirping of the single atom resonance
frequency of such a two-level atomic dipole system. The NDD inter-
actions give rise to a local effect that modifies the microscopic field
coupling the atom and which is obtained from the macroscopic field
and the induced polarization [1]. The significant contribution of the
NDD interaction comes from the entities enclosed in a tiny volume of the
order of a cubic wavelength, and that is prominent in a dense medium.
The use of the modified Maxwell–Bloch equation allowed to predict
many interesting results caused by NDD effects. For example, invariant
pulse propagation that departs from the hyperbolic secant pulse shape
(with pulse area different from 2𝜋) related to self-induced transparency
(SIT) [2] and self-phase modulation in SIT [3]. Other relevant results
include the observation of intrinsic optical bistability (IOB) when the
atomic number density and the oscillator strengths are very high [4];
enhancement of gain in systems showing inversionless lasing; optical
switching; among others. When a sample of atoms interacts with the
external driving field, then the generated reaction field due to the
induced dipoles in this samples works against the applied field leading
to a decrease in the net field. If the external driving field is stronger
than the generated reaction field due to the dipole–dipole interaction,
then the manifestation of the suppression of reaction field can be
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observed as a first-order phase transition far away from the equilibrium
condition [5,6].

The importance and application of dipole–dipole interaction in-
cluding NDD interaction in some physical processes is summarized in
the following. The physical process in which two microscopic entities,
e.g., atoms or artificial atoms (quantum dots), molecules, chromophores
interacts through dipole–dipole interaction to transfer energy is po-
tentially considered as a significant process during the photosynthe-
sis [7,8]. The transfer of energy with dipole–dipole interaction process
is also crucial in investigating protein conformational dynamics [9,10].
Transfer of energy through dipole–dipole interaction is beneficial in
quantum information processing systems to achieve the entanglement
of qubits [11]. The dipole–dipole interaction may be helpful to realize
Bose–Einstein condensates at high temperatures [12]. The dipole–dipole
interaction could be of near field type or far field type. This interaction
depends on the relative distance of two atoms. The process of near-field
dipole–dipole interaction is governed through virtual photon exchange
in atoms.

Modified nonlinear Maxwell–Bloch equations are required to de-
scribe the interaction of the propagating electromagnetic field in a dense
two-level medium [1]. In an optically dense medium, the near dipole–
dipole interaction among atoms (occurring at microscopic scale) plays
a significant role and leads to the renormalization of the resonance
frequency of transition. This renormalization is governed by the popu-
lation inversion in the two-level system. However, to get a relationship
between the macroscopic electric field 𝐄𝑀 and the polarization 𝐏 to
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the microscopic field 𝐄𝑚 (causing the excitation in the atomic system
through the dipole interaction), the Lorentz–Lorentz relation

𝐄𝑚 = 𝐄𝑀 + 4𝜋
3
𝐏 (1)

is required. This equation is valid for homogeneous and isotropic media
of the static fields. According to the extinction theorem [13], such an
equation is also valid for the monochromatic time-dependent propagat-
ing field in a linear, homogeneous, and isotropic medium. However, in
an optically dense medium where many interesting nonlinear effects
can be studied, one needs to get a proper relationship between the
microscopic and the macroscopic fields.

Maxwell’s equations along with Eq. (1) (related to the local field cor-
rection) provide a Clausius–Mossotti relation between the microscopic
polarizability 𝛽, and the macroscopic dielectric parameter 𝜖𝑀 , of any
solid, liquid or gaseous medium. This relation takes the form [1]

𝛽 = 3
4𝜋𝑁

(

𝜖𝑀 − 1
𝜖𝑀 + 2

)

, (2)

where 𝑁 is the number of entities (atoms or molecules) per unit
volume. Causality and retardation phenomena are essential to explain
the propagation of time-dependent fields. In the literature, it has been
shown using the extinction theorem that for a linear, homogeneous,
and isotropic medium, Eq. (1) works well and hence Eq. (2) is also
appropriate for such medium [1]. The propagation of a field in a dense
and nonlinear medium consisting of multi-level atoms requires modified
atomic and field equations to include the effect of induced dipole–dipole
interaction in these equations.

The Maxwell’s wave equation provides the relationship between the
macroscopic electric field 𝐄𝑀 , and the macroscopic polarization 𝐏

∇2𝐄𝑀 − 1
𝑐2

𝜕2𝐄𝑀

𝜕𝑡2
= 4𝜋

𝑐2
𝜕2𝐏
𝜕𝑡2

, (3)

with 𝑐 the speed of light in vacuum. The vector quantities 𝐄𝑀 and 𝐏 are
waves traveling in the 𝑧-direction and expressed as

𝐄𝑀 = 𝜀 𝑒−𝑖(𝜔𝑡−𝑘𝑧𝑧) + 𝑐.𝑐.

𝐏 = ℘ 𝑒−𝑖(𝜔𝑡−𝑘𝑧𝑧) + 𝑐.𝑐.
(4)

with wave vector 𝑘𝑧, frequency 𝜔, and slowly varying quantities 𝜀 and
℘ = 𝑖𝜇𝑁𝐷𝑎𝑏. 𝑁 is the density of two-level atoms in the medium and
𝜇𝐷𝑎𝑏 is the transition dipole matrix element.

In general, the microscopic field interacting with the atomic dipole
is not identical with the macroscopic field appearing in Maxwell’s
equations. This difference is because the field driving the atom does not
contain the local field of the atom. On the other hand, the macroscopic
field of Maxwell’s equations does include the local field. Hence, it is
essential to get a relationship between the microscopic and macroscopic
field when the atomic system is optically dense (which means a large
number of atoms within a cubic resonance wavelength) [1].

In previous works [1,6] for the two-level system, the Maxwell–Bloch
equations for the dense medium under the slowly-varying-envelope ap-
proximation for the field were obtained for a homogeneous medium that
contained a large number of atoms within a small volume determined by
the cube of the resonance wavelength. In earlier work [14], the effects of
near dipole–dipole interaction on a three-level system undergoing lasing
without inversion were studied, and enhancements in inversionless gain
and refractive index without absorption were predicted. However, in
that work, the authors treated the problem differently from the way we
intend to show in this present work on a three-level system. In another
work, the effect of dipole–dipole interaction has been discussed in the
cavity quantum electrodynamics of two-level atoms [15,16].

This paper is organized as follows: Section 2 describes the model
under consideration followed by some analytical results for linear and
third-order susceptibilities of the probe transition in Section 3. Numer-
ical results for absorption and dispersion are discussed in Section 4 by
solving the exact density matrix equation. In Section 5 some concluding
remarks are provided.

Fig. 1. Diagram of the three-level system in a 𝛬-configuration and driven by a
probe and coupling lasers of frequencies 𝜔𝑃 and 𝜔𝐶 , respectively.

2. The model

In this work, we extend the development of atomic density op-
erator equations for a three-level atomic system when the fields are
propagating in an optically dense medium. Such a dense medium is
characterized by a high number of atoms within the volume determined
by the cube of the resonance wavelength. The medium consists of a
three-level system in a 𝜆-type configuration of its levels [17,18]. The
model under consideration uses a semiclassical approximation where
the system interacts with the classical electromagnetic fields of two
lasers. The probe and coupling laser beams with frequencies 𝜔𝑃 and
𝜔𝐶 , respectively, interact with the atomic transitions 𝜔21 and 𝜔23, as
shown in Fig. 1. The Liouville equations of density-matrix elements in
the dipole and rotating wave approximations are given by [17,18]

̇𝜌22 − 𝜌11 = − (𝛾23 + 2𝛾21)𝜌22 + 2𝑖𝜇12(𝜀𝑃𝐿)
∗𝜌21 − 2𝑖𝜇12(𝜀𝑃𝐿)𝜌12

+ 𝑖𝜇23(𝜀𝐶𝐿)
∗𝜌23 − 𝑖𝜇23(𝜀𝐶𝐿)𝜌32 − 𝛾31(𝜌33 − 𝜌11),

̇𝜌22 − 𝜌33 = − (2𝛾23 + 𝛾21)𝜌22 + 𝑖𝜇12(𝜀𝑃𝐿)
∗𝜌21 − 𝑖𝜇12(𝜀𝑃𝐿)𝜌12

+ 2𝑖𝜇23(𝜀𝐶𝐿)
∗𝜌23 − 2𝑖𝜇23(𝜀𝐶𝐿)𝜌32 − 𝛾31(𝜌11 − 𝜌33),

�̇�23 = − (𝛾 + 𝑖𝛥𝐶 )𝜌23 + 𝑖𝜇23(𝜀𝐶𝐿)(𝜌22 − 𝜌33) − 𝑖𝜇12(𝜀𝑃𝐿)𝜌13,

�̇�21 = − (𝛾 + 𝑖𝛥𝑃 )𝜌21 + 𝑖𝜇12(𝜀𝑃𝐿)(𝜌22 − 𝜌11) − 𝑖𝜇23(𝜀𝐶𝐿)𝜌31,

�̇�31 = −
[

𝛾31 + 𝑖(𝛥𝑃 − 𝛥𝐶 )
]

𝜌31 − 𝑖𝜇23(𝜀𝐶𝐿)
∗𝜌21 + 𝑖𝜇12(𝜀𝑃𝐿)𝜌32.

(5)

In Eq. (5), 𝜀𝑃𝐿 and 𝜀𝐶𝐿 are complex, microscopic, slowly-varying
electric field envelopes of the probe and coupling fields, respectively.
The radiative decay rates from levels |2⟩ to |1⟩ and |2⟩ to |3⟩ are 𝛾21
and 𝛾23, respectively. The non-radiative decay rate between levels |3⟩
and |1⟩ is 𝛾31. We also introduce 𝛾 = 1

2 (𝛾21 + 𝛾32 + 𝛾31). The Rabi
frequencies of the probe and coupling fields are defined as 𝛺𝑃 = 2𝜇12𝜀𝑃𝐿
and 𝛺𝐶 = 2𝜇32𝜀𝐶𝐿 , respectively. The transition dipole matrix elements
for transitions between levels |1⟩ and |2⟩ (|3⟩) is 𝜇12 (𝜇23), which will
be commonly represented by the symbol 𝜇𝑖 (with 𝑖 = 12,23) in the
subsequent discussion.

Since we have two electromagnetic fields interacting with the three-
level system, we denote these microscopic fields by 𝐄𝑖

𝐿, with 𝑖 = 𝑃 , 𝐶,
and 𝑃 and 𝐶 denoting the probe and coupling field, respectively. We
consider fields to be linearly polarized and moving as plane waves. The
three-level atom is stationary and located at position 𝐫𝑙. The microscopic
field is the sum of the external driving field and the reaction field of the
induced dipoles in the medium [1]

𝐄𝑖
𝐿(𝐫𝑙 , 𝑡) = 𝐄𝑖

𝑒𝑥𝑡(𝐫𝑙 , 𝑡) +
𝑁
∑

𝑚=1
ℵ𝑖
𝑙𝑚 exp

[

−𝑖𝐤𝑖 ⋅ (𝐫𝑙 − 𝐫𝑚)
]

× 𝜌𝑖(𝑡 − 𝑟𝑙∕𝑐), (𝑖 = 𝑃 , 𝐶). (6)
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