Accepted Manuscript

Low-grade waste heat driven desalination with an open loop heat pipe

Xiantao Zhang, Yuxi Liu, Xinyi Wen, Changzheng Li, Xuejiao Hu

PII:	S0360-5442(18)31657-8
DOI:	10.1016/j.energy.2018.08.121
Reference:	EGY 13597
To appear in:	Energy
Received Date:	30 March 2018
Accepted Date:	16 August 2018

Please cite this article as: Xiantao Zhang, Yuxi Liu, Xinyi Wen, Changzheng Li, Xuejiao Hu, Lowgrade waste heat driven desalination with an open loop heat pipe, *Energy* (2018), doi: 10.1016/j. energy.2018.08.121

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Low-grade waste heat driven desalination with an open loop heat pipe
2	
3	Xiantao Zhang ^{a,b} , Yuxi Liu ^a , Xinyi Wen ^a , Changzheng Li ^{b,c,*} , Xuejiao Hu ^b
4	
5	^a Wuhan Second Ship Design and Research Institute, Wuhan, Hubei 430064, China
6	^b School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
7	^c Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of
8	Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi
9	University, Nanning, Guangxi 530004, China
10	* Corresponding author. E-mail address: lichangzheng@whu.edu.cn (C. Li)
11	
12	ABSTRACT
13	An innovative low-grade heat driven desalination system inspired by heat pipe is proposed in this
14	work. The system utilizes siphon force to create vacuum environment for seawater evaporation at much
15	lower temperature which can significantly reduce energy consumption. The capillary force of the NiO
16	wick pumps the seawater to the evaporator and pushes the generated vapor to the condenser without
17	using any additional mechanical equipment. Localized vaporization in the micro channels of the NiO
18	wick's surface further improves the heat utilization efficiency. Experimental results show that nearly
19	$3.88 \text{ kg/(m^2 \cdot h)}$ of distilled water production rate can be produced at the heat source temperature as low
20	as 34 °C and this value can be increased to 55.25 kg/(m ² ·h) at the temperature of 60 °C. The
21	corresponding heat-conversion efficiency is 65.2% and 90.7%, respectively, which is much higher than
22	that of most conventional desalination techniques. With the very low temperature operation condition

Download English Version:

https://daneshyari.com/en/article/8948734

Download Persian Version:

https://daneshyari.com/article/8948734

Daneshyari.com