
Accepted Manuscript

On the growth rate instability of nonextensively opposite polarity dusty plasmas

S.K. Zaghbeer, E.K. El-Shewy, A.M. El-Hanbaly, H.H. Salah, N.H. Sheta, A. Elgarayh

PII:	S0273-1177(18)30511-8
DOI:	https://doi.org/10.1016/j.asr.2018.06.027
Reference:	JASR 13809
To appear in:	Advances in Space Research
Received Date:	24 November 2017
Revised Date:	17 June 2018
Accepted Date:	19 June 2018

Please cite this article as: Zaghbeer, S.K., El-Shewy, E.K., El-Hanbaly, A.M., Salah, H.H., Sheta, N.H., Elgarayh, A., On the growth rate instability of nonextensively opposite polarity dusty plasmas, *Advances in Space Research* (2018), doi: https://doi.org/10.1016/j.asr.2018.06.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

On the growth rate instability of nonextensively opposite polarity dusty plasmas

S.K. Zaghbeer¹, E. K. El-Shewy^{*2,3}, A. M. El-Hanbaly³, H. H. Salah¹, N. H. Sheta¹, A. Elgarayh³ ¹Faculty of Science for Girls, Al-Azhar University, Nasr City, Cairo, Egypt. ²Department of Physics, Taibah University, Al-Madinah Al-Munawarrah, , Kingdom of Saudi Arabia ³Theoretical Physics Group, Faculty of Science, Mansoura University, Mansoura, Egypt.

June 17, 2018

Abstract

Nonlinear obliquely and wave instability features in a magnetized collisionless dusty plasma containing negative- positive dusty grains are theoretically explored. The equation of Zakharov Kuznetsov is derived by reductive perturbation calculations and three dimensional wave instability is examined using small k expansion procedure. The system parameters namely, cyclotron frequency, the polarity grain charges ratio, nonextensive effects on DA wave properties and instability growth rate are discussed. Present dissection can be important in phenomena of nonlinear perception in astrophysical plasma of space.

^{*}E Mail: eattiaelshewy@taibahu.edu.sa. emadshewy@yahoo.com

Download English Version:

https://daneshyari.com/en/article/8948921

Download Persian Version:

https://daneshyari.com/article/8948921

Daneshyari.com